
https://wp.inf.ed.ac.uk/apl18

Advances in Programming Languages
Terms and Types

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 20 September 2018
Semester 1 Week 1

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Summary

Abstraction: Lift the level of operations you can describe

Programmability: Build a new computer from the one you have

Expression: Broaden your thoughts and the programs you can imagine

“To me programming is more than an important practical art. It is also a gigantic undertaking
in the foundations of knowledge.”

David Sayre (one of the creators of FORTRAN) in conversation with
Grace Hopper (one of the key advocates for COBOL), 1962

Ian Stark APL / Lecture 2 2018-09-20



What’s in the course?

The lectures will cover four sample areas of “advances in programming languages”:

Types: Parameterized, Polymorphic, Dependent, Refined
Programming for Concurrency
Augmented Languages for Correctness and Certification
[Your choice here: Memory Safety and Rust, or . . . , or . . . ]

Lectures also specify reading and exercises on the topics covered. This homework is not
assessed, but it is essential in order to fully participate in the course.
There is substantial piece of written coursework which contributes 20% of your course grade.
This requires investigation of a topic in programming languages and writing a 10-page report
with example code.

Ian Stark APL / Lecture 2 2018-09-20



Acknowledgements !

This course is based on an original proposal by Stephen Gilmore. It has been developed over
time by Ian Stark and David Aspinall, and continues to evolve from year to year. Things
change: programming languages, the challenges that arise, and ways to meet them.

Ian Stark Stephen Gilmore David Aspinall

Ian Stark APL / Lecture 2 2018-09-20

http://homepages.inf.ed.ac.uk/stark/
http://homepages.inf.ed.ac.uk/stg/
http://homepages.inf.ed.ac.uk/da/


Colour Coding of Slides !

Regular Substantive Slide

We might like a language that is:

Easy to learn, quick to write, expressive, concise, powerful, supported, well-provided
with libraries, cheap, popular, . . .

It might help us to write programs that are:

Readable, correct, fast, reliable, predictable, maintainable, secure, robust, portable,
testable, verifiable, composable, . . .

It might help us address challenges in:

Multicore architectures, distributed computing, warehouse-scale computation,
programming the web, quantum computing, . . .

Ian Stark APL / September 20, 2018

Announcement Slide !

Course: Advances in Programming Languages

Lecturer: Ian Stark

Level: Undergraduate Year 4, Year 5 and MSc students (10 credit points at Level 11)

When: 1610–1700 Monday & Thursday

Where: LG.11 David Hume Tower / Gaddum Lecture Theatre

Web: https://wp.inf.ed.ac.uk/apl18

Learn: Advances in Programming Languages (2018-2019)[SV1-SEM1]

Ian Stark APL / September 20, 2018

Bonus Off-Syllabus Slide +

Left Hemisphere

Parietal

Lobes

Right Hemisphere

Occipital

Lobes

Cerebrocerebellum

Spinocerebellum

Vestibulocerebellum

Cerebrum

Frontal

Lobe

Parietal

Lobe

Temporal Lobe

Occipital

Lobe

Midbrain

Pons

Medulla

Brainstem

Cerebellum

Ian Stark APL / September 20, 2018

Ian Stark APL / Lecture 2 2018-09-20



Topic: Some Types in Programming Languages

This first block of lectures in this course looks at some uses of types.

Terms and Types

Parameterized Types and Polymorphism

Higher Polymorphism

Dependent Types

The study of Type Theory is a part of logic and the foundations of mathematics. However,
many aspects of it apply directly to programming languages, and research in type systems has
for many decades been an active route for the exchange of new ideas between computer
science and mathematics.

Ian Stark APL / Lecture 2 2018-09-20



Outline

1 Types

2 Lambda Calculus

3 First-Class Functions in Programming Languages

4 Closing

Ian Stark APL / Lecture 2 2018-09-20



Homework

1 Read the Wikipedia article on History of programming languages.
(If you find it’s missing something, fix that.)

2 Pick a programming language you don’t already know, and find out the following.
Does it assign types to distinguish between things like numbers, strings, or functions?
Does it check these are used correctly?
How does it do that? When does it do that?

Bring your answers along to the lecture.

Ian Stark APL / Lecture 2 2018-09-20

http://en.wikipedia.org/wiki/History_of_programming_languages


Some types
A selection of types from some languages.
C/C++

int, long, float, unsigned int, char
int [], char∗, char&, int(∗)(float,char)
extern const volatile unsigned long int

OCaml
int , int64, bool, char, string, unit
string∗string, int list , bool array
int−>int, int−>string−>char, ’a list −> ’a list

Java
Object, byte[], boolean
StringBuffer, LinkedList, TreeSet, ArrayList<String>
IllegalPathStateException, BeanContextServiceRevokedListener

Ian Stark APL / Lecture 2 2018-09-20



What do people do with types?

Type checking
Static type checking
Dynamic type checking
Type annotation
Type inference
Structural typing
Nominative typing
Duck typing

Subtyping
Effect types
Session types
Refinement types
Soft typing
Gradual typing
Dynamic types
Blame typing

Ian Stark APL / Lecture 2 2018-09-20



To find out more. . . +

Benjamin C. Pierce.
Types and Programming Languages.
MIT Press, 2002.

Ian Stark APL / Lecture 2 2018-09-20

http://www.cis.upenn.edu/~bcpierce/tapl/index.html
http://www.cis.upenn.edu/~bcpierce/tapl/


. . . and lots more +

Benjamin C. Pierce, editor.
Advanced Topics in Types and
Programming Languages.
MIT Press, 2005.

Ian Stark APL / Lecture 2 2018-09-20

http://www.cis.upenn.edu/~bcpierce/attapl/
http://www.cis.upenn.edu/~bcpierce/attapl/
http://www.cis.upenn.edu/~bcpierce/attapl/


Lambda Calculus

The Lambda Calculus or λ-calculus is a formal system for
modelling and reasoning about computation. Its origins lie in
mathematics and logic, and it was created to give a structure for
working with the foundations of logic on a par with more familiar
mathematical constructions like groups and vector spaces.

We may draw the analogy of a three dimensional geometry
used in describing physical space, a case for which, we believe,
the presence of such a situation is more commonly recognized.
Alonzo Church, Princeton, 1931

Annals of Mathematics Series 2, 33:346–366
DOI:10.2307/1968337Ian Stark APL / Lecture 2 2018-09-20

https://doi.org.ezproxy.is.ed.ac.uk/10.2307/1968337
https://doi.org.ezproxy.is.ed.ac.uk/10.2307/1968337


Terms
We define a set Term of terms using the following rules, where Var is some set of variables
x,y, . . .

Rules for Constructing Lambda-Calculus Terms

Var x
Term x

Variable Var x TermM

Term λx.M
Function
abstraction

Var x here means “x is a variable”
TermM here means “M is a term”

TermM1 TermM2
TermM1M2

Function
application

Each rule states that when we have all the things above the line (the hypotheses) then we can
deduce the thing below the line (the conclusion).
Taken together, these rules describe Term as an inductively defined set, the smallest set closed
under all the rules.
Ian Stark APL / Lecture 2 2018-09-20



Terms
We define a set Term of terms using the following rules, where Var is some set of variables
x,y, . . .

Rules for Constructing Lambda-Calculus Terms

Var x
Term x

Variable Var x TermM

Term λx.M
Function
abstraction

Var x here means “x is a variable”
TermM here means “M is a term”

TermM1 TermM2
TermM1M2

Function
application

In writing terms we use parentheses where necessary to disambiguate the structure. Application
is left-associative, so FMN means (FM)N.
To help with examples we might also include as terms some set Const of constants such as 2,
+, sqrt, . . .
Ian Stark APL / Lecture 2 2018-09-20



Bound and Free Variables

Variables in a term that match some enclosing λ are bound by that λ.
All other variables mentioned in a term are free.

Examples
λn.(n+ 1) Variable n is bound

λx.(λy.(x ∗ y ∗ z)) Here x and y are bound and z is free

(λf.f(p+ q)) (sqrt) Here f is bound while p and q are free

Ian Stark APL / Lecture 2 2018-09-20



Substitution
Alpha Equivalence
We say that terms like λx.(x+ 1) and λy.(y+ 1) are α-equivalent, and usually consider them to
represent the same lambda-term.
Replacing one variable with another like this is called α-conversion.

Capture-Avoiding Substitution
We write M{N/x} to represent the term M with every occurrence of variable x replaced with
the term N.
If N contains a variable y that is bound in M, there is a risk of it being captured by the
binding. Usually this is a bad thing, and we should α-convert the binding in M first to give
capture-avoiding substitution.

Example
(λx.(x ∗ y)) {(x+ x)/y} = (λz.(z ∗ y)) {(x+ x)/y} = (λz.(z ∗ (x+ x)))

Ian Stark APL / Lecture 2 2018-09-20



Reduction

The β-reduction rule is central to the role of lambda-abstractions as functions, and to the
lambda-calculus as a model of computation.

Beta-Reduction
(λx.M)N −→ M{N/x}

There is much more to lambda-calculus reduction — rules for constants, applying β within
terms, simultaneous β-reduction, confluence, normalization — but for now it’s enough to see
that the β rule captures the effect of function application.

Ian Stark APL / Lecture 2 2018-09-20



Types for Terms
So far we have had an untyped system: rules for building up terms, α-equivalence, β-reduction
all work by rearranging symbols. This works, and the untyped lambda-calculus is a complete
computational framework.

(Look up the “Church-Turing thesis”)

The typed lambda-calculus constrains the system a little, by specifying what sort of arguments
a function will accept and what sort of result it returns. This is particularly appropriate when
we have constants with intrinsic types.

We write M : τ to indicate that term M has type τ.

Examples
sqrt 25 : num λa.(λb.(a+ b)) : num→ (num→ num)

λx.(x+ 2) : num→ num λf.(f(4) ∗ x)) : (num→ num)→ num

Ian Stark APL / Lecture 2 2018-09-20



Simply-Typed Lambda Calculus
A type context Γ is a set of variables with types.

Γ = {x1 : τ1, x2 : τ2, . . . , xn : τn}
A type declaration Γ `M : τ asserts that if the variables in Γ have the types listed, then
term M has type τ.

Rules for Constructing Typed Lambda-Calculus Terms

Γ ` x : τ x : τ ∈ Γ Variable

Γ , x : τ1 `M : τ2
Γ ` (λx:τ1.M) : τ1 → τ2

Function abstraction

Γ ` F : τ1 → τ2 Γ `M : τ1
Γ ` FM : τ2

Function application

Ian Stark APL / Lecture 2 2018-09-20



Styles of Typing
The rules just given require lambda-abstraction to include the type of the bound variable:

(λx:τ.x) : τ→ τ

This is called Church-style typing.

Earlier, we saw some terms without these internal type statements:

λa.(λb.(a+ b)) : num→ (num→ num)

This is Curry-style typing.

Both styles are viable, with a range of slight variations in common use.

In fact, this applies more broadly for formal systems like this: while most presentations are
internally consistent about syntax, rules, and terminology there may be small variations
between different presentations. For example, writing typed variables as xτ rather than x:τ.
Ian Stark APL / Lecture 2 2018-09-20



Church and Curry +

Alonzo Church (1903–1995) Haskell Curry (1900–1982)

Ian Stark APL / Lecture 2 2018-09-20



Why λ ? +

Apparently Church originally used a “hat” over the bound variable

x̂.(x+ 1)

which for a more linear notation was moved to the left by printers and enlarged

∧x.(x+ 1)

to give something very like the uppercase Greek lambda

Λx.(x+ 1)

and to avoid confusion with the letter “A” this was replaced with a lowercase lambda

λx.(x+ 1) .

So the story goes.
Ian Stark APL / Lecture 2 2018-09-20



Pairing and Tuples

All sorts of interesting types can be added to the basic typed lambda calculus. Many can in fact
be encoded in one way or another, but it’s often convenient to have them presented explicitly.
For example, here is one representation for pairs (M1,M2) with product type (τ1 × τ2).

Terms
TermM1 TermM2

Term (M1,M2)

Term fst

Term snd

Typing

Γ `M1 : τ1 Γ `M2 : τ2
Γ ` (M1,M2) : τ1 × τ2

` fst : (τ1 × τ2)→ τ1

` snd : (τ1 × τ2)→ τ2

Reduction

fst(M1,M2) −→M1

snd(M1,M2) −→M2

This can be extended to tuples of arbitrary size (M1,M2, . . . ,Mn), and there are similar rules
for sum types (τ1 + τ2). Exercise: Write sum type rules

Ian Stark APL / Lecture 2 2018-09-20



Curried Functions

Lambda-calculus functions taking multiple arguments can be written either using tuples or a
function that returns a function.

Examples
λp:(num× num) . (fstp+ sndp) : (num× num)→ num

λa:num.(λb:num.(a+ b)) : num→ (num→ num)

Passing from (num× num)→ num to num→ (num→ num) is called Currying, and the latter
type is usually written as num→ num→ num .

Ian Stark APL / Lecture 2 2018-09-20



Higher-Order Functions

A term has ground type or is
zero-order if it is not a function.

5 : num true : bool sqrt(3) : real

A function is first-order if it only takes
arguments that are of ground type.

negate : num→ num
xor : bool→ bool→ bool

power : num→ (real→ real)

A function is second-order if it takes a
first-order function as an argument.

integrate : (real→ real)→ (real→ real)
is-zero-at : num→ (num→ num)→ bool

apply : (σ→ τ)→ σ→ τ

A function is order n if it takes an
order (n−1) function as an argument.

. . .

All functions of second order and above are higher-order functions.

Ian Stark APL / Lecture 2 2018-09-20



Not Today
There are many features of typed and untyped lambda calculus that are important and
interesting, but will not appear in this course.

Confluence of reduction rules
Evaluation strategies: call-by-value; call-by-name; parallel; optimal
Recursive functions
Type inference
. . .

There are also many things that can be encoded in the lambda-calculus, or added to it, or
sometimes both, that we shall not look at further.

Natural numbers
Booleans, sets, data structures
Objects
Stateful computation, input/output, side-effects
. . .

Ian Stark APL / Lecture 2 2018-09-20



First-Class Functions

The lambda-calculus originated as mathematical model for describing possible computation;
programming languages arose as a vehicle for carrying it out. They have some common history,
but also notable differences. One is the treatment of functions.

The lambda-calculus is built of functions: they make up both program and data. Many
programming languages do include functions — as procedures, methods, etc. — but usually as
specialised control structures where the functions themselves are not values in the language.

The distinctive feature here is to make functions first-class in a language: passed as arguments
to other functions, returned as results, created anonymously during execution, stored,
combined, applied, and discarded.

These make a powerful abstraction in programming. For example, first-class and higher-order
functions can replace many uses of introspection and runtime code generation, while being
fully compiled and statically checkable.
Ian Stark APL / Lecture 2 2018-09-20



Summary

Types appear widely in programming languages, used for many purposes, and play a significant
role in the organisation and structuring of code.

The lambda calculus is a model of computation that takes functions as fundamental, and
builds everything out of variables, function abstraction, and function application. Formal rules
give ways to build terms, reduce one term to another, and assign types to terms.

Many programming languages include the facility for constructing and using functions as
first-class citizens alongside other sorts of data.

“Language is a cracked kettle on which we beat out tunes for bears to dance to, while all the
time we long to move the stars to pity.” Gustave Flaubert (1821–1880)

Ian Stark APL / Lecture 2 2018-09-20



Homework

Watch This
https://is.gd/yang_vision (Video, 2m18s)
Language design and software verification, MIT Technology Review, May 2017
Jean Yang, Assistant Professor of Computer Science, Carnegie Mellon University

Do This
Find out about the Blub Paradox and read the article that named it.

Read This

Achim Jung
A Short Introduction to the Lambda Calculus http://is.gd/jung_lc

You may find it helpful to read pages 1–7 of Pierce’s “Foundational Calculi for Programming
Languages” alongside, although that’s wholly untyped. http://is.gd/pierce_fc

Ian Stark APL / Lecture 2 2018-09-20

https://is.gd/yang_vision
http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf
http://is.gd/jung_lc
https://www.cis.upenn.edu/~bcpierce/papers/pict_bib.html#Pierce95a
https://www.cis.upenn.edu/~bcpierce/papers/pict_bib.html#Pierce95a
http://is.gd/pierce_fc


Extra Interest +

After Jung’s technical paper try these two, very different, pages:

Bret Victor’s Alligator Eggs
(Try Takashi Yamamiya’s animation of these)

Wikipedia on First-Class Functions
(If you like that, dip into the opinions on the Talk page)

Ian Stark APL / Lecture 2 2018-09-20

http://worrydream.com/AlligatorEggs
http://metatoys.org/alligator/#!/(%CE%BBx.x)%20(%CE%BBy.y)
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Talk:First-class_function

	Types
	Lambda Calculus
	First-Class Functions in Programming Languages
	Closing

