
https://wp.inf.ed.ac.uk/apl18

Advances in Programming Languages
Parameterized Types and Polymorphism

Ian Stark

School of Informatics
The University of Edinburgh

Monday 24 September 2018
Semester 1 Week 2

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

PLInG: Programming Language Interest Group !

PLInG: Programming Language Interest Group
School of Informatics

Next Meeting: 1pm Thursday 4 October 2018 in IF 3.02

PLInG is an informal meeting series for anyone interested in programming languages. All
Informatics staff and students are welcome to participate. The group meets every two weeks or
so, with presentation of interesting recent papers, discussion of work in progress, informal talks
by visitors, etc.

See also: SPLS, PLUG, other-PL-based initialisms, . . .
I’ll post more information on the apl-students mailing list and elsewhere.

Ian Stark APL / Lecture 3 2018-09-24

http://www.dcs.gla.ac.uk/research/spls/
https://lists.inf.ed.ac.uk/mailman/private/apl-students/

Topic: Some Types in Programming Languages

The current block of lectures look at some uses of types.

Terms and Types

Parameterized Types and Polymorphism

Higher Polymorphism

Dependent Types

The study of Type Theory is part of logic and the foundations of mathematics. However, many
aspects of it apply directly to programming languages, and research in type systems has for
many decades been an active route for the exchange of new ideas between computer science
and mathematics.

Ian Stark APL / Lecture 3 2018-09-24

Outline

1 Opening

2 First-Class Functions

3 Parameterized Types

4 Polymorphism

5 Closing

Ian Stark APL / Lecture 3 2018-09-24

Outline

1 Opening

2 First-Class Functions

3 Parameterized Types

4 Polymorphism

5 Closing

Ian Stark APL / Lecture 3 2018-09-24

Review

Types appear widely in programming languages, used for many purposes, and play a significant
role in the organisation and structuring of code.

The lambda calculus is a model of computation that takes functions as fundamental, and builds
everything out of variables, function abstraction, and function application. Formal rules give
ways to build terms, reduce one term to another, and assign types to terms.

Many programming languages include the facility for constructing and using functions as
first-class citizens alongside other sorts of data.

“Language is a cracked kettle on which we beat out tunes for bears to dance to, while all the
time we long to move the stars to pity.” Gustave Flaubert (1821–1880)

Ian Stark APL / Lecture 3 2018-09-24

Homework

Watch This
https://is.gd/yang_vision (Video, 2m18s)
Language design and software verification, MIT Technology Review, May 2017
Jean Yang, Assistant Professor of Computer Science, Carnegie Mellon University

Do This
Find out about the Blub Paradox and read the article that named it.

Read This

Achim Jung
A Short Introduction to the Lambda Calculus http://is.gd/jung_lc

You may find it helpful to read pages 1–7 of Pierce’s “Foundational Calculi for Programming Languages”
alongside, although that’s wholly untyped. http://is.gd/pierce_fc

Ian Stark APL / Lecture 3 2018-09-24

https://is.gd/yang_vision
http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf
http://is.gd/jung_lc
https://www.cis.upenn.edu/~bcpierce/papers/pict_bib.html#Pierce95a
http://is.gd/pierce_fc

Extra Interest +

After Jung’s technical paper try these two, very different, pages:

Bret Victor’s Alligator Eggs
(Try Takashi Yamamiya’s animation of these)

Wikipedia on First-Class Functions
(If you like that, dip into the opinions on the Talk page)

Ian Stark APL / Lecture 3 2018-09-24

http://worrydream.com/AlligatorEggs
http://metatoys.org/alligator/#!/(%CE%BBx.x)%20(%CE%BBy.y)
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Talk:First-class_function

Outline

1 Opening

2 First-Class Functions

3 Parameterized Types

4 Polymorphism

5 Closing

Ian Stark APL / Lecture 3 2018-09-24

First-Class Functions

The lambda-calculus originated as mathematical model for describing possible computation;
programming languages arose as a vehicle for carrying it out. They have some common history,
but also notable differences. One is the treatment of functions.

The lambda-calculus is built of functions: they make up both program and data. Many
programming languages do include functions — as procedures, methods, etc. — but usually as
specialised control structures where the functions themselves are not values in the language.

The distinctive feature here is to make functions first-class in a language: passed as arguments
to other functions, returned as results, created anonymously during execution, stored,
combined, applied, and discarded.

These make a powerful abstraction in programming. For example, first-class and higher-order
functions can replace many uses of introspection and runtime code generation, while being fully
compiled and statically checkable.

Ian Stark APL / Lecture 3 2018-09-24

Examples

A key marker for first-class functions in a language is the availability of lambda-abstraction to
create anonymous functions (or function literals or simply lambdas).

LISP languages — including Common Lisp, Scheme, Racket — have always included lambdas
and higher-order functions.

(lambda (x y) (+ x y)) ; Add two numbers

The same is true for other functional languages, such as those based on ML: Standard ML,
OCaml, F#:

(fn p => 2∗p) (∗ Double a value, Standard ML syntax ∗)

as well as Haskell:

\p -> \q -> p ++ q -- Concatenate two lists.

Ian Stark APL / Lecture 3 2018-09-24

Examples

Java (since Java 8)

q -> q+1

(a,b) -> Math.sqrt(a∗a + b∗b)

(String s, String t) -> { String result = s + t; return result; }

Smalltalk
[:x | x∗x∗x]

Scala
(f : String=>Int, s: String) => f(s)

See Wikipedia “Anonymous functions” for many, many more
Ian Stark APL / Lecture 3 2018-09-24

http://en.wikipedia.org/wiki/Anonymous_function

Amazon Web Services Lambda +

Upload your code as a lambda. Run it
when needed. No server management,
runs in parallel if called multiple
times, scales with use.

First 1 million calls are free

After that, $0.0000002 each

https://aws.amazon.com/lambda

Ian Stark APL / Lecture 3 2018-09-24

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda

Closures

When a function builds another function, that may include references to the original function’s
arguments. In lambda-calculus, for example:

(λx:num. (λy:num.(x ∗ y)) 5 −→ λy:num.(5 ∗ y)

In a programming language this is typically implemented by returning not just a function but
also the values of its free variables:

{ x = 5; (λy:num.x ∗ y) } .

This combination of function and variable environment is known as a closure.

Closures are particularly significant for imperative languages, where they may require extending
the lifetime of local variables.

Java, for example, disallows closures that refer to mutable state.
Ian Stark APL / Lecture 3 2018-09-24

Forbidden Closure in Java

import java.util.function.Predicate; // A "predicate" is a test that takes
// a value and returns a boolean result.

// This checker takes a string predicate and sees
public class Checker { // what answer it returns for one specific value

public void runCheck(Predicate<String> p) {
if (p.test("secret"))

{ System.out.println("Pass"); }
else

{ System.out.println("Fail"); }
}

}

Ian Stark APL / Lecture 3 2018-09-24

Forbidden Closure in Java

...
public void runLengthTests (Checker c) { // Given a checker, try it out on some predicates

int n = 0;

Predicate<String> lengthTest = // A predicate to select strings of n or more characters
(String y) -> {

System.out.println("Comparing to: "+n);
return (y.length() >= n);

};

n = 4; c.runCheck(lengthTest); // Run the checker to test length 4 or more

n = 8; c.runCheck(lengthTest); // Run the checker to test length 8 or more
}

// What happens when we try to compile this?

Ian Stark APL / Lecture 3 2018-09-24

Forbidden Closure in Java

...
public void runLengthTests (Checker c) { // Given a checker, try it out on some predicates

int n = 0;

Predicate<String> lengthTest = // A predicate to select strings of n or more characters
(String y) -> {

System.out.println("Comparing to: "+n); // error when compiling
return (y.length() >= n); // error when compiling

};

n = 4; c.runCheck(lengthTest); // Run the checker to test length 4 or more

n = 8; c.runCheck(lengthTest); // Run the checker to test length 8 or more
}

// error: local variables referenced from a lambda expression must be final or effectively final

Ian Stark APL / Lecture 3 2018-09-24

Outline

1 Opening

2 First-Class Functions

3 Parameterized Types

4 Polymorphism

5 Closing

Ian Stark APL / Lecture 3 2018-09-24

Java

Java is serious about abstraction
Java works almost entirely by class-based object-oriented programming; it encourages the use of
abstract classes through inheritance and interfaces; and it does not expose the private workings
of classes and packages.

Java is serious about typing
Java has strong static typing: all programs are checked for type-correctness at compile-time.
Bytecode is checked again when classes are loaded, by the bytecode verifier, before execution.
Even the invokedynamic bytecode introduced in Java 7 checks its dynamically created code.

All this means that for any feature or programming technique in Java there is a very strong
drive to have it properly handled within the type system.

Ian Stark APL / Lecture 3 2018-09-24

Arrays and Collections

Java Arrays
Java has built-in arrays of fixed size containing elements of a given type.

float [], String [], Object[], TimeStamp[]

Arrays in Java are a parameterized type: there are many different sorts of array, depending on
the type of value they contain.

Ian Stark APL / Lecture 3 2018-09-24

Arrays and Collections

Java Collections
The java. util package contains implementations of many kinds of collection — sets, lists,
queues, maps, etc.

Before Java 5, these all contained any sort of object, or mixture of objects.

// Implementations of some collections
public class HashSet implements Set
public class ArrayList implements List

// Methods in List interface
public void add(int index, Object o)
public Object get(int index)

As any object can be treated as having class Object, this is correct, but very approximate.

In particular, fetching values out of a collection often requires downcasting from Object to a
more specific type before doing any further computation. That involves a runtime check, and
that might fail.

Ian Stark APL / Lecture 3 2018-09-24

Java Generics

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler
Making the Future Safe for the Past: Adding Genericity to the Java Programming Language
In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pp. 183–200. ACM Press, 1998.
DOI: 10.1145/286942.286957

// Implementations of some collections
..HashSet<E> implements Set<E>
..ArrayList<E> implements List<E>

// Methods in List<E> interface
public void add(int index, E element)
public E get(int index)

Retrofitting this to the language was a major challenge, developed over several years: generic
code had to work with existing non-generic code; to be checkable at compile-time; and with no
change to the virtual machine. Included with Java 5 in 2004.
http://homepages.inf.ed.ac.uk/wadler/gj
Ian Stark APL / Lecture 3 2018-09-24

http://dx.doi.org.ezproxy.is.ed.ac.uk/10.1145/286942.286957
https://doi.org.ezproxy.is.ed.ac.uk/10.1145/286942.286957
http://homepages.inf.ed.ac.uk/wadler/gj

Generics for .NET

Andrew Kennedy and Don Syme
Design and Implementation of Generics for the .NET Common Language Runtime
In PLDI ’01: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1–12. ACM Press, 2001.
DOI: 10.1145/381694.378797

Work done over a similar period to Java, but with a different approach.
Convinced Microsoft to modify the virtual machine
Microsoft were prepared to make more significant language changes
Had to support multiple-language working
Included more flexible and powerful type features
Provided more runtime support

Included with .NET Framework 2.0 in 2005.
https://is.gd/dng_hist

Andrew Kennedy’s
generic mug

Ian Stark APL / Lecture 3 2018-09-24

http://dx.doi.org.ezproxy.is.ed.ac.uk/10.1145/381694.378797
https://is.gd/dng_hist

Algebraic Datatypes

Haskell

data Tree a = Leaf a | Node (Tree a) (Tree a)

Node (Leaf 3) (Leaf 4) : Tree int

OCaml

[1; 2; 3] : int list

let rec sum list = match list with
| [] -> 0
| x::xs -> x + (sum xs);;

val sum : int list -> int = <fun>

Ian Stark APL / Lecture 3 2018-09-24

Type Constructors
We have seen different examples of types that come in families:

Generics in Java and C#/.NET;
Algebraic datatypes in Haskell and OCaml.

These are all parameterized types: types that vary according to some parameter.
Each specific parameterized type is built by applying a type constructor to one or more type
parameters.

Examples of Parameterized Types
Java Set<String> constructor Set parameter String
Haskell Tree int constructor Tree parameter int
OCaml (bool -> bool) list constructor list parameter bool->bool

Where values and functions have types, types and
constructors have kinds, e.g. int : ∗ and Tree : ∗ -> ∗

Ian Stark APL / Lecture 3 2018-09-24

Parameterized Types in the Lambda Calculus
It is not hard to add specific parameterized types to the lambda calculus.

In fact we’ve already seen some with product and function space.

Examples of Parameterized Types
(4, 5) : num× num constructor ‘×’ parameters num and num
λx.(x+ 1) : num→ num constructor ‘→’ parameters num and num

Adding further type constructors like list or tree is straightforward.

Type τ
Type list τ

Type τ
Type tree τ

All this has given us lots of types, but what about values of those types? What about functions
that accept and return values of those types?
Ian Stark APL / Lecture 3 2018-09-24

Outline

1 Opening

2 First-Class Functions

3 Parameterized Types

4 Polymorphism

5 Closing

Ian Stark APL / Lecture 3 2018-09-24

Polymorphism
Code is polymorphic when it can be used with values of different types.
One example is the use of virtual method calls in object-oriented code.

Shape[] shapeArray;
...
for (Shape s : shapeArray) // For every shape in the array ...
{ s.draw(); } // ... invoke its "draw" method.

Each Shape s may actually be a Square, Circle or other implementation of Shape, each with its
own implementation of draw.

These implementations may be entirely different, and possibly
incompatible: consider Picture.draw() and Cowboy.draw().

Ian Stark APL / Lecture 3 2018-09-24

Flavours of Polymorphism

Ad-hoc Polymorphism
Classic object-oriented polymorphism: invoke method a.draw() and get whatever code is
assigned to the target object a or its class.

Implementing this requires some attention to the dispatch of methods to determine the code
finally executed.

Parametric Polymorphism
Operations that act similarly whatever the argument type: for example, sorting a list, or
applying a function to every element of a collection.

Parametric polymorphism is heavily used in functional languages, and closely tied to
parameterized types. In object-oriented languages it is usually known as generic programming.

Ian Stark APL / Lecture 3 2018-09-24

Parametric Polymorphic Code

OCaml

reverse : ’a list -> ’a list

length : ’a list -> int

let rec map f = function
| [] -> []
| (x :: xs) -> (f x) :: (map f xs) ;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

When compiled, the functions reverse, length and map will each use exactly the same code for
any argument type.
Ian Stark APL / Lecture 3 2018-09-24

Parametric Polymorphic Code

Java
static void rotate(List<?> list, int distance) // In java.util .Collections

static void shuffle(List<?> list) // Uses a default randomness source

static <E> List<E> heapSort(List<E> elements) {
Queue<E> queue = new PriorityQueue<E>(elements);
List<E> result = new ArrayList<E>();

while (!queue.isEmpty()) result.add(queue.remove());

return result;
}

When compiled, the methods rotate, shuffle and heapSort will use exactly same code for any
argument type.
Ian Stark APL / Lecture 3 2018-09-24

Outline

1 Opening

2 First-Class Functions

3 Parameterized Types

4 Polymorphism

5 Closing

Ian Stark APL / Lecture 3 2018-09-24

Summary

Many programming languages include the facility for constructing and using functions as
first-class citizens alongside other sorts of data. Closures combine function bodies with variable
environments, and together with higher-order functions these provide a powerful programming
abstraction.

Parameterized types let us express families of types with common structure, building a complex
structured type by applying a type constructor to one or more type parameters.

Polymorphism enables code to act on values of many types. With ad-hoc polymorphism,
different values may be treated differently; with parametric polymorphism a single piece of code
acts in the same way on many different argument types. This is one kind of generic
programming, and parametric polymorphism in object-oriented languages is often known as
generics.

Ian Stark APL / Lecture 3 2018-09-24

Homework (1/2)

Read This
Luca Cardelli https://is.gd/cardelli_types
Type Systems: Section 1 “Introduction”.
Chapter 97 of The Computer Science and Engineering Handbook, 2nd Edition

Watch This
https://is.gd/wadler_pat_video (Video, 43m)
Propositions as Types (Recorded at Strange Loop, September 2015)
Phil Wadler, Professor of Theoretical Computer Science, Edinburgh University

Code This
. . . see next slide.

Ian Stark APL / Lecture 3 2018-09-24

https://is.gd/cardelli_types
http://lucacardelli.name/indexPapers.html#Type%20systems
https://is.gd/wadler_pat_video

Homework (2/2)
Java has subtyping: a value of one type may be used at any more general type. So
String 6 Object, and every String is an Object. This isn’t always straightforward.

String[] a = { "Hello", "world" }; // Array of strings
Object[] b = a; // Array of objects (every string is an object)
b[0] = Boolean.FALSE; // Assign object to array of objects
String s = a[0]; // Fetch string from array of strings
System.out.println(s.toUpperCase()); // Convert string to upper-case

1 Build a Java program around this.
2 Compile it. Run it.
3 What happens, and when? Can you explain why?
4 How might you change the Java language to prevent this?
5 Pick another object-oriented language: what happens when you try this there?

Ian Stark APL / Lecture 3 2018-09-24

	Opening
	First-Class Functions
	Parameterized Types
	Polymorphism
	Closing

