
https://wp.inf.ed.ac.uk/apl18

Advances in Programming Languages
Lecture 5: Higher Polymorphism

Ian Stark

School of Informatics
The University of Edinburgh

Monday 1 October 2018
Semester 1 Week 3

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

PLInG: Programming Language Interest Group !

PLInG: Programming Language Interest Group
School of Informatics

Next Meeting: 1pm Thursday 4 October 2018 in IF 3.02

PLInG is an informal meeting series for anyone interested in programming languages. All
Informatics staff and students are welcome to participate. The group meets every two weeks or
so, with presentation of interesting recent papers, discussion of work in progress, informal talks
by visitors, etc.

See also: SPLS, PLUG, other-PL-based initialisms, . . .
I’ll post more information on the apl-students mailing list and elsewhere.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

http://www.dcs.gla.ac.uk/research/spls/
https://lists.inf.ed.ac.uk/mailman/private/apl-students/

Topic: Some Types in Programming Languages

The current block of lectures look at some uses of types.

Terms and Types

Parameterized Types and Polymorphism

Higher Polymorphism

Dependent Types

The study of Type Theory is part of logic and the foundations of mathematics. However, many
aspects of it apply directly to programming languages, and research in type systems has for
many decades been an active route for the exchange of new ideas between computer science
and mathematics.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Outline

1 Opening

2 Subtyping and Polymorphism

3 Hindley-Milner

4 Beyond Hindley-Milner

5 Closing

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Outline

1 Opening

2 Subtyping and Polymorphism

3 Hindley-Milner

4 Beyond Hindley-Milner

5 Closing

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Homework
Before the next lecture find an online tutorial for each of the assignment topics:

Parallel performance portability with Lift
Dynamic information flow policies in Jeeves
Programming quantum computation with Quipper
Query expressions for language-integrated database access in F#
Probabilistic programming for statistical inference in Stan

Send me your list of five links and I will summarize them for the class.

Use them to help choose your topic.

“You can never understand one language until you understand at least two.”
Ronald Searle, artist (1920–2011)

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Review

Types appear widely in programming languages, used for many purposes, and play a significant
role in the organisation and structuring of code.

The lambda calculus is a model of computation that takes functions as fundamental, and builds
everything out of variables, function abstraction, and function application. Formal rules give
ways to build terms, reduce one term to another, and assign types to terms.

Many programming languages include the facility for constructing and using functions as
first-class citizens alongside other sorts of data. Closures combine function bodies with variable
environments, and together with higher-order functions these provide a powerful programming
abstraction.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Review
Parameterized types let us express families of types with common structure, building a complex
structured type by applying a type constructor to one or more type parameters.

Examples of Parameterized Types
Java Set<String> constructor Set parameter String
Haskell Tree int constructor Tree parameter int
OCaml (bool -> bool) list constructor list parameter bool->bool

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Review
Polymorphism enables code to act on values of many types. For ad-hoc polymorphism, method
dispatch gives different actions on different types. With parametric polymorphism, a single piece
of code acts in the same way on many different argument types.

Ad-hoc Polymorphism in Java
Shape[] shapeArray;
...
for (Shape s : shapeArray) // For every shape in the array ...
{ s.draw(); } // ... invoke its "draw" method.

Parametric Polymorphism in OCaml

reverse : ’a list -> ’a list
length : ’a list -> int

let rec map f = function ...
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

Ad-hoc Polymorphism in Java
Shape[] shapeArray;
...
for (Shape s : shapeArray) // For every shape in the array ...
{ s.draw(); } // ... invoke its "draw" method.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Review
Parametric polymorphism is one kind of generic programming, and parametric polymorphism in
object-oriented languages is often known as generics.

Java generics
static void rotate(List<?> list, int distance) // In java.util .Collections

static void shuffle(List<?> list) // Use default randomness source

static <E> List<E> heapSort(List<E> elements) { ... }

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Outline

1 Opening

2 Subtyping and Polymorphism

3 Hindley-Milner

4 Beyond Hindley-Milner

5 Closing

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Previous Homework
Java has subtyping: a value of one type may be used at any more general type. So
String 6 Object, and every String is an Object. This isn’t always straightforward.

String[] a = { "Hello", "world" }; // Array of strings
Object[] b = a; // Array of objects (every string is an object)
b[0] = Boolean.FALSE; // Assign object to array of objects
String s = a[0]; // Fetch string from array of strings
System.out.println(s.toUpperCase()); // Convert string to upper-case

1 Build a Java program around this.
2 Compile it. Run it.
3 What happens, and when? Can you explain why?
4 How might you change the Java language to prevent this?
5 Pick another object-oriented language: what happens when you try this there?

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

What is Subtyping?
The idea of behavioural subtyping is that if S is a subtype of T then any S can be substituted
in place of a T.

Liskov’s principle of substitutivity:

. . . properties that can be proved using the specifica-
tion of an object’s presumed type should hold even
though the object is actually a subtype of that type.

Barbara Liskov
2008 Turing Award

Jeannette Wing
VP Microsoft Research

Barbara Liskov and Jeannette Wing
A Behavioral Notion of Subtyping
ACM Transactions on Programming Languages and Systems 16(6):1811–1841
DOI: 10.1145/197320.197383

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

http://amturing.acm.org/award_winners/liskov_1108679.cfm
https://www.microsoft.com/en-us/research/people/wing/
http://dl.acm.org/citation.cfm?doid=197320.197383

Subtyping Arrays in Java

Java has subtyping: a value of one type may be used at any more general type. So
String 6 Object, and every String is an Object. This isn’t always straightforward.

String[] a = { "Hello", "world" }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s.toUpperCase()); // This isn’t going to be pretty

This compiles fine, with no errors or warnings.

When executed, we get a runtime type error at b[0] = Boolean.FALSE

Exception in thread "main" java.lang.ArrayStoreException: java.lang.Boolean at Subtype.main(Subtype.java:7)

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Subtyping Arrays in Java

Java has subtyping: a value of one type may be used at any more general type. So
String 6 Object, and every String is an Object. This isn’t always straightforward.

String[] a = { "Hello", "world" }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s.toUpperCase()); // This isn’t going to be pretty

This compiles with no errors or warnings: in Java, if S 6 T then S[] 6 T[].

That makes String[] 6 Object[], and we can use a String[] anywhere we need an Object[].

Except that it isn’t and we can’t. So every array assignment gets a runtime check.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Subtyping Arrays in Java

Java has subtyping: a value of one type may be used at any more general type. So
String 6 Object, and every String is an Object. This isn’t always straightforward.

String[] a = { "Hello", "world" }; // A small string array
Object[] b = a; // Now a and b are the same array
b[0] = Boolean.FALSE; // Drop in a Boolean object
String s = a[0]; // Oh, dear
System.out.println(s.toUpperCase()); // This isn’t going to be pretty

What else could we do?
Prevent by-reference assignment, method call, and return. Only pass complete arrays.
Forbid array update and make all arrays immutable.
Remove array subtyping.

Current Java keeps String[] 6 Object[] and inserts runtime type checks.
Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Subtype variance
The issue here is that String[] is a parameterized type, like List<Object>, or in Haskell
Maybe a and (a,b)->(b,a).

Suppose some type A〈X〉 depends on type X, and types S and T have S 6 T. Then the
dependency of A on X is:

Covariant if A〈S〉 6 A〈T〉 e.g. pair A〈X〉= X ∗ X

Contravariant if A〈S〉 > A〈T〉 e.g. test A〈X〉= (X→bool)

Invariant if neither of these holds. e.g. array A〈X〉= X[]

For example, in the Scala language, type parameters can be annotated with variance
information: List[+T], Function[-S,+T]; while C# 4.0 introduced in and out variance tags.

In Java, arrays are typed as if they were covariant. But they aren’t.
see also parameter covariance in Eiffel

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Typing in Object-Oriented languages

Ideally, a statically-checked object-oriented language should have a type system that is

(a) usable, and

(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to object-oriented programming, but unfortunately:

subtyping is not inheritance; (really, it’s not)
(although Java makes inheritance ⇒ subtyping)

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Really, it’s not

W. R. Cook.
Interfaces and specifications for the
Smalltalk-80 collection classes.
Proc. OOPSLA ’92, pp. 1–15.

W. R. Cook, W. Hill, and P. S.
Canning.
Inheritance is not subtyping.
Proc. POPL ’90, pp. 125–135.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

http://dx.doi.org.ezproxy.is.ed.ac.uk/10.1145/141936.141938
http://dx.doi.org.ezproxy.is.ed.ac.uk/10.1145/141936.141938
http://dx.doi.org.ezproxy.is.ed.ac.uk/10.1145/96709.96721

Typing in Object-Oriented languages

Ideally, a statically-checked object-oriented language should have a type system that is

(a) usable, and

(b) correct.

Building such type systems is a continuing challenge.

One problem is that subtyping is crucial to OO programming, but unfortunately:

subtyping is not inheritance; (really, it’s not)
(although Java makes inheritance ⇒ subtyping)

it’s also extremely hard to get right.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

How hard?

Fixing object subtyping has been a busy research topic for several years.

You can see this by observing that the type declared for the max method in the Java collections
class has gone from: (Java 1.2, 1998)

public static Object max(Collection coll)

which always returns an Object, whatever is stored in the collection, to:

public static <T extends Object & Comparable<? super T>>
T max(Collection<? extends T> coll)

and it might still throw a ClassCastException. (Java 11, 2018)

This is not a criticism: the new typing is more flexible, it saves on explicit downcasts, and the
Java folks do know what they are doing.

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

https://web.archive.org/web/20000818174739/http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collections.html#max(java.util.Collection)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collections.html#max(java.util.Collection)

Outline

1 Opening

2 Subtyping and Polymorphism

3 Hindley-Milner

4 Beyond Hindley-Milner

5 Closing

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Remember the Lambda Calculus?

All sorts of interesting types can be added to the basic typed lambda calculus. Many can in fact
be encoded in one way or another, but it’s often convenient to have them presented explicitly.
For example, here is one representation for pairs (M1,M2) with product type (τ1 × τ2).

Terms

TermM1 TermM2
Term (M1,M2)

Term fst

Term snd

Typing

Γ `M1 : τ1 Γ `M2 : τ2
Γ ` (M1,M2) : τ1 × τ2

` fst : (τ1 × τ2)→ τ1

` snd : (τ1 × τ2)→ τ2

Reduction

fst(M1,M2) −→M1

snd(M1,M2) −→M2

This can be extended to tuples of arbitrary size (M1,M2, . . . ,Mn), and there are similar rules
for sum types (τ1 + τ2). Exercise: Write sum type rules

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Polymorphic Types in the Lambda Calculus

fst : ∀α,β.(α× β)→ α

swap = λp.(sndp, fstp) : ∀α,β.(α× β)→ (β× α)
identity = λx.x : ∀α.α→ α

apply = λf.(λx.(fx)) : (α→ β)→ α→ β

compose = λf.λg.λx.g(f x) : ∀α,β,γ.(α→ β)→ (β→ γ)→ (α→ γ)

Generalise types τ to type schemes σ which quantify over type variables α, β, γ,. . .

σ ::= τ | ∀α.σ

Type schemes cannot have the for-all quantifier inside types, just at the outer level.
Concrete types τ are instances of a type scheme σ.
Also sometimes referred to as polytype σ and monotype τ.
Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Checking Polymorphic Types

Rules for Polymorphic Types

Generalize Γ `M : σ
Γ `M : ∀α.σ α /∈ free(Γ)

Specialize Γ `M : ∀α.σ
Γ `M : σ{τ/α} free(σ) ∩ free(τ) = ∅

Let-binding Γ `M1 : σ1 Γ , x : σ1 `M2 : σ2
Γ ` let x =M1 inM2 : σ2

Notice that we cannot form a lambda-abstraction with a polymorphically-
typed variable, but instead have to use a new let-binding syntax.

let x =M inN
This relates to the way type schemes only allow the for-all quantifier ∀ at the outer level.
Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Inferring Polymorphic Types
We cannot abstract variables of polymorphic type into a lambda term, but instead have to use
a let-binding syntax that indicates where a term is to be used polymorphically:

let x =M inN

This restriction makes it possible to perform type inference: given a lambda term with no types,
it is possible to work out a type that is:

Correct — it can be checked using the rules; and
The most general type — all other possible types are instances of it

This is known as the Hindley-Milner type system, and the original method for type inference is
called “Algorithm W”.

Hindley-Milner forms the basis of types in Haskell and all ML-family languages languages like
OCaml and F#. They offer an excellent trade-off between expressivity (lots of terms have
useful types) and practicality (type inference is always possible, and the algorithm is efficient).
Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Outline

1 Opening

2 Subtyping and Polymorphism

3 Hindley-Milner

4 Beyond Hindley-Milner

5 Closing

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

http://web.archive.org/web/20010124090400/http://www.bagley.org/~doug/shootout/

http://web.archive.org/web/20010124100400/http://www.bagley.org/~doug/shootout/craps.shtml

http://benchmarksgame.alioth.debian.org/

Comparing Sort Algorithms
Suppose we have a collection of functions, all implementing different sorting algorithms.

Sorter = ∀α.(α→ α→ bool)→ listα→ listα

bubbleSorter, quickSorter, heapSorter, mergeSorter, bogoSorter, . . . : Sorter

Here Sorter is a type scheme, capturing the fact that each algorithm can be applied to different
types of list.
Here’s a function that takes a Sorter and tries it out on a few cases.

simpleSorterTester =
λ sorter . ((sorter greaterThan [5, 22, 2]) == [2, 5, 22])

and((sorter lessThan [5, 22, 2]) == [22, 5, 2]
and((sorter dictionaryBefore ["sort", "test"]) == ["sort", "test"]

The simpleSorterTester takes a single polymorphic argument, the sorter, and uses it at multiple
types. This is rank-2 polymorphism.
Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Comparing Sort Algorithms
In some cases it is possible to automatically infer rank-2 polymorphic types.

simpleSorterTester : (∀α.(α→ α→ bool)→ listα→ listα)→ bool

What if we go higher? Suppose we want to build the sorting comparison game and apply a
whole range of tests to different sorters?

testManySorters = λ sorters . λ sorterTesters . (tabulate sorterTesters sorters)

testManySorters [bubbleSorter, quickSorter, heapSorter]
[yourSorterTester, mySorterTester]

This is now beyond even rank-2 polymorphism, and we cannot manage without significantly
more explicit type annotations.

testManySorters : list(∀α.(α→ α→ bool) → listα→ listα) → list((∀α.(α→ α→ bool) → listα→ listα) → bool) → list (list bool)

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Outline

1 Opening

2 Subtyping and Polymorphism

3 Hindley-Milner

4 Beyond Hindley-Milner

5 Closing

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

Homework

Really Do This
Before the next lecture find an online tutorial for each of the assignment topics. Send me your
list of five links and I will summarize them for the class.

Use them to help choose your topic.

Watch This
https://is.gd/weirich_types (Video, 29m33s)

Dependent Typing, Extending Haskell, Type System Research: Interview by InfoQ

Stephanie Weirich
Professor of Computer and Information Science, University of Pennsylvania

Ian Stark APL / Lecture 5: Higher Polymorphism 2018-10-01

https://is.gd/weirich_types

	Opening
	Subtyping and Polymorphism
	Hindley-Milner
	Beyond Hindley-Milner
	Closing

