
https://wp.inf.ed.ac.uk/apl18

Advances in Programming Languages
Lecture 6: Higher Types

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 4 October 2018
Semester 1 Week 3

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Some Types in Programming Languages

The current block of lectures look at some uses of types.

Terms and Types

Parameterized Types and Polymorphism

Higher Polymorphism

Higher Types

Dependent Types

The study of Type Theory is part of logic and the foundations of mathematics. However, many
aspects of it apply directly to programming languages, and research in type systems has for
many decades been an active route for the exchange of new ideas between computer science
and mathematics.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Homework

Really Do This
Before the next lecture find an online tutorial for each of the assignment topics. Send me your
list of five links and I will summarize them for the class.

Use them to help choose your topic.

Watch This
https://is.gd/weirich_types (Video, 29m33s)

Dependent Typing, Extending Haskell, Type System Research: Interview by InfoQ

Stephanie Weirich
Professor of Computer and Information Science, University of Pennsylvania

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

https://is.gd/weirich_types

Review

Parameterized types like Queue<String> express families of types with common structure,
applying a type constructor to one or more type parameters.

Behavioural subtyping is based on Liskov’s principle of substitutivity that S is a subtype of T
if and only if any S can be used in place of a T.

Variance describes subtyping for parameterized types, where type parameters may be
covariant, contravariant or invariant.

Hindley-Milner is a way to type parametric polymorphism in the lambda-calculus, introducing
type schemes to generalize types and let-binding syntax to use polymorphic functions.

Type Inference makes it possible to write strongly-typed polymorphic code that is expressive
but uncluttered by type annotations; while “Algorithm W” automatically identifies a
principle type that is the most general type possible for a term.

Rank-2 types and beyond describe things not reachable in Hindley-Milner.

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Types for Parametric Polymorphic Code

OCaml

reverse : ’a list -> ’a list

length : ’a list -> int

let rec map f = function
| [] -> []
| (x :: xs) -> (f x) :: (map f xs) ;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

When compiled, the functions reverse, length and map will each use exactly the same code for
any argument type.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Types for Parametric Polymorphic Code

Java
static void rotate(List<?> list, int distance) // In java.util .Collections

static void shuffle(List<?> list) // Uses a default randomness source

static <E> List<E> heapSort(List<E> elements) {
Queue<E> queue = new PriorityQueue<E>(elements);
List<E> result = new ArrayList<E>();

while (!queue.isEmpty()) result.add(queue.remove());

return result;
} // Code from https://docs.oracle.com/javase/tutorial/collections/interfaces/queue.html

When compiled, the methods rotate, shuffle and heapSort will use exactly same code for any
argument type.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Polymorphic Types in the Lambda Calculus

fst : ∀α,β.(α× β)→ α

swap = λp.(sndp, fstp) : ∀α,β.(α× β)→ (β× α)
identity = λx.x : ∀α.α→ α

apply = λf.(λx.(fx)) : (α→ β)→ α→ β

compose = λf.λg.λx.g(f x) : ∀α,β,γ.(α→ β)→ (β→ γ)→ (α→ γ)

Generalise types τ to type schemes σ which quantify over type variables α, β, γ,. . .

σ ::= τ | ∀α.σ

Type schemes cannot have the for-all quantifier inside types, just at the outer level.
Concrete types τ are instances of a type scheme σ.
Also sometimes referred to as polytype σ and monotype τ.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Checking Polymorphic Types

Rules for Polymorphic Types

Generalize Γ `M : σ
Γ `M : ∀α.σ α /∈ free(Γ)

Specialize Γ `M : ∀α.σ
Γ `M : σ{τ/α} free(σ) ∩ free(τ) = ∅

Let-binding Γ `M1 : σ1 Γ , x : σ1 `M2 : σ2
Γ ` let x =M1 inM2 : σ2

Notice that we cannot form a lambda-abstraction with a polymorphically-
typed variable, but instead have to use a new let-binding syntax.

let x =M inN
This relates to the way type schemes only allow the for-all quantifier ∀ at the outer level.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Inferring Polymorphic Types
We cannot abstract variables of polymorphic type into a lambda term, but instead have to use
a let-binding syntax that indicates where a term is to be used polymorphically:

let x =M inN

This restriction makes it possible to perform type inference: given a lambda term with no types,
it is possible to work out a type scheme that is:

Correct — it can be checked using the rules; and
The most general or principal type scheme — all other correct types are instances of it.

This is known as the Hindley-Milner type system, and the original method for type inference is
called “Algorithm W”.

Hindley-Milner forms the basis of types in Haskell and all ML-family languages languages like
OCaml and F#. They offer an excellent trade-off between expressivity (lots of terms have
useful types) and practicality (type inference is always possible, and the algorithm is efficient).
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Comparing Sort Algorithms
Suppose we have a collection of functions, all implementing different sorting algorithms.

Sorter = ∀α.(α→ α→ bool)→ listα→ listα

bubbleSorter, quickSorter, heapSorter, mergeSorter, bogoSorter, . . . : Sorter

The Sorter type scheme captures how each algorithm can be applied to different types of list.

Here’s a function that takes a Sorter and tries it out on a few cases.

simpleTester =

λ sorter . ((sorter greaterThan [5, 22, 2]) == [2, 5, 22])
and((sorter lessThan [5, 22, 2]) == [22, 5, 2]
and((sorter dictionaryBefore ["sort", "test"]) == ["sort", "test"]

The simpleTester takes a single polymorphic argument, the sorter, and uses it at multiple types.
This is rank-2 polymorphism.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Comparing Sort Algorithms

In some cases it is possible to automatically infer rank-2 polymorphic types.

Tester = (Sorter→ bool) = (∀α.(α→ α→ bool)→ listα→ listα)→ bool

simpleTester : Tester

What if we go higher? Suppose we want to build the sorter comparison game and apply a
whole range of tests to different sorters?

testManySorters = λ sorters . λ testers . (tabulate testers sorters)

testManySorters [bubbleSorter, quickSorter, heapSorter]
[yourTester, myTester]

What type does this have? We are now beyond even rank-2 polymorphism, and cannot manage
without significantly more explicit type annotations.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

The Sorter Comparison Game

testManySorters = λ sorters . λ testers . (tabulate testers sorters)

testManySorters [bubbleSorter, quickSorter, heapSorter]
[yourSorterTester, mySorterTester]

What type does this have? We are now beyond even rank-2 polymorphism, and cannot manage
without significantly more explicit type annotations.

testManySorters : list (Sorter)→ list (Tester)→ list (list bool)

= list(∀α.(α→ α→ bool)→ listα→ listα)
→ list((∀α.(α→ α→ bool)→ listα→ listα)→ bool)
→ list (list bool)

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

System F
The polymorphic lambda-calculus, also known as the second-order lambda-calculus, or
System F, was discovered independently by the logician Jean-Yves Girard and the computer
scientist John Reynolds.
In System F a polymorphic term is a function with a type as a parameter. For example:

identity = ΛX.(λx:X . x) : ∀X.(X→ X)

With this definition:
identityAM β

=⇒ M for any M : A.

Moreover, because ∀X.(X→ X) is a System F type, we even have:

identity (∀X.(X→ X)) identity β
=⇒ identity .

The fact that ∀X ranges over all possible types, even the type being defined at the time, is
known as impredicativity. Hindley-Milner is predicative
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Change of Notation Metavariables
When describing Hindley-Milner types, the type schemes and type variables were written with
Greek letters (τ, σ, α). To distinguish System F this lecture moves to Roman letters for type
(meta)variables.

Notation
Terms Types
Variables x,y, z Variables X, Y,Z
Terms M,N, . . . Types A,B,C, . . .
Term definitions, pair, fst, snd, Type definitions, Product, Sum,
constants, constructors uncapitalisedwords constants, constructors CapitalisedWords

All types and terms will be written with Church-style explicit types as in (λx:A.M).
Declarations use a type variable context ∆ = {X1,X2, . . . } and term variable context
Γ = {x1 : A1, x2 : A2, . . . }.
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Rules for Types and Terms in System F

Types

Type Variable

∆ ` Type X X ∈ ∆

Function Type

∆ ` Type A ∆ ` Type B
∆ ` Type A→ B

For-All Type

∆,X ` Type A
∆ ` Type ∀X.A

Terms
Variable

∆; Γ ` x : A x : A ∈ Γ

Abstraction ∆; Γ , x : A `M : B
∆; Γ ` (λx:A.M) : A→ B

Application ∆; Γ ` F : A→ B ∆; Γ `M : A
∆; Γ ` FM : B

Type Abstraction ∆,X; Γ `M : A
∆; Γ ` ΛX.M : ∀X.A

Type Application ∆ ` Type A ∆; Γ `M : ∀X.B
∆; Γ `MA : B{A/X}

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Rules for Reduction of Terms in System F

The basic lambda-calculus rewrite rule of beta-reduction, where a function is applied to an
argument, in System F now has two cases.

Beta-Reduction

Type Application Term Application
(ΛX.M)A −→ M{A/X} (λx:A.M)N −→ M{N/x}

We write
M

β
=⇒ N

to indicate that term M reduces to N in zero or more steps of beta-reduction.

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Some System F Types
System F provides enough machinery to typecheck all those sorters and testers; although this
also means passing around types explicitly.

Sorter = ∀X.(X→ X→ Bool)→ ListX→ ListX

bubbleSorter, quickSorter, heapSorter, mergeSorter, bogoSorter, . . . : Sorter

simpleTester =

λ sorter:Sorter . ((sorter num greaterThan [5, 22, 2]) == [2, 5, 22])
and((sorter num lessThan [5, 22, 2]) == [22, 5, 2]
and((sorter string dictionaryBefore ["sort", "test"]) == ["sort", "test"]

simpleTester : Tester = Sorter→ Bool
= (∀X.(X→ X→ Bool)→ ListX→ ListX)→ Bool

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Some System F Types

Now that sorters and testers are explicitly polymorphic, the high-level operation of tabulating
results can be done without any need to see these low-level details.

testManySorters = λ sorters : List (Sorter) . λ testers : List (Tester) . (tabulate testers sorters)

testManySorters [bubbleSorter, quickSorter, heapSorter] [yourTester, myTester]

testManySorters : List (Sorter)→ List (Tester)→ List (List bool)

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

If You Liked That. . . +

Chris Okasaki
Even higher-order functions for parsing or Why would
anyone ever want to use a sixth-order function?
Journal of Functional Programming 8(2):195–199,
March 1998
DOI: 10.1017/S0956796898003001

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

http://dx.doi.org.ezprozy.is.ed.ac.uk/10.1017/S0956796898003001
http://dx.doi.org.ezprozy.is.ed.ac.uk/10.1017/S0956796898003001
http://dx.doi.org/10.1017/S0956796898003001

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Some Datatypes

Basic Datatype Constructors
Function Space λx:A.M : A→ B As in functions, lambdas, procedures, methods,. . .

Product (M,N) : A× B As in product, record, struct,. . .

Sum inl, inr : A+ B As in sum, variant, union,. . .

Of these, the simplest version of System F includes only function spaces. The others can be
added, but — perhaps surprisingly — they can also be defined within System F already by
using function spaces and polymorphic type abstraction.

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Encoding Products in System F

Product Type and Pairing

Prod X Y = ∀Z.((X→Y→Z)→ Z)

pair = ΛX.ΛY.(λx:X.λy:Y.(ΛZ.λf:(X→Y→Z).(f x y)))
pair : ∀X.∀Y.(X→ Y → Prod X Y)

pairA BMN
β

=⇒ ΛZ.λf:(A→B→Z).f MN

First Projection

fst = ΛX.ΛY.λp:(Prod X Y).p X (λx:X.λy:Y.x)
fst : ∀X.∀Y.Prod X Y → X

fstA B (pairA BMN)
β

=⇒M

Syntactic Sugar

A× B = ProdA B
(M,N)A,B = pairA BMN : A× B

fstA,B = fstA B : A× B→ A

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Exercises for the Reader

Based on the preceding encoding for products in System F:

Write out a definition for second projection “snd”;

Show that it has the right type, and reduces with

sndA B (pairA BMN)
β

=⇒ N

Define terms inl and inr and case for the following definition of sum types:

Sum X Y = ∀Z.((X→Z)→ (Y→Z)→ Z)

What is the type corresponding to (∀X.X→ X) ? What about (∀X.X) ?

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Beyond System F
System F is a powerful and expressive type system, but it is just the start of a whole panoply of
type features.

System F<: (F-sub) introduces bounded quantification ∀X<A.B.
Java uses this in declarations like class A<T extends String> ...

The more elaborate F-bounded quantification is ∀X<F(X).B for any type constructor F(−).
Java uses this too, in class A<T extends Comparable<T>> ...

System F2 introduces lambda-abstraction for types, not just terms; for example:

(λ(X:∗).λ(Y:∗).(X× Y × Y)) : ∗ → ∗ → ∗ .

With System Fω we get abstraction over type operators of higher kinds; for example:

(λ(F:(∗→ ∗→∗)).λ(X:∗).(F X X)) : (∗ → ∗ → ∗)→ ∗ → ∗ .

And the existential type ∃X.A is dual to the universal ∀X.A, but can be encoded using it. . .
Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Outline

1 Opening

2 Hindley-Milner and more

3 System F

4 Datatypes

5 Beyond System F

6 Closing

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

Homework

1. Do This
Work through those “Exercises for the Reader” on encoding products and sums in System F.

2. Write This
The outline draft for your written coursework assignment. Aim to have by Monday’s lecture
either your “Hello, World!” screenshot in the Example section or a paragraph for each of three
references in the Resources section.

Extensions
Pick a strongly-typed programming language then try writing (and typechecking) two sorters, two
testers, and code to testManySorters.

Find out how { Java, Scala, C#, Haskell, ... } handles type { variance, bounds, quantification, kinds }.

Ian Stark APL / Lecture 6: Higher Types 2018-10-04

	Opening
	Hindley-Milner and more
	System F
	Datatypes
	Beyond System F
	Closing

