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Topic: Some Types in Programming Languages

The current block of lectures look at some uses of types.

Terms and Types

Parameterized Types and Polymorphism

Higher Polymorphism

Higher Types

Dependent Types

The study of Type Theory is part of logic and the foundations of mathematics. However, many
aspects of it apply directly to programming languages, and research in type systems has for
many decades been an active route for the exchange of new ideas between computer science
and mathematics.
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Homework

1. Do This
Work through those “Exercises for the Reader” on encoding products and sums in System F.

2. Write This
The outline draft for your written coursework assignment. Aim to have by Monday’s lecture
either your “Hello, World!” screenshot in the Example section or a paragraph for each of three
references in the Resources section.

Extensions
Pick a strongly-typed programming language then try writing (and typechecking) two sorters, two
testers, and code to testManySorters.
Find out how { Java, Scala, C#, Haskell, ... } handles type { variance, bounds, quantification, kinds }.
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Review

Polymorphic code can be used with values of different types. Method invocation in
object-oriented languages can demonstrate ad-hoc polymorphism, where code does
different things at different types; while parametric polymorphism (or generics)
describes code that does the same thing at different types.

Parameterized types like Queue<String> express families of types with common structure,
applying a type constructor to one or more type parameters.

Behavioural subtyping is based on Liskov’s principle of substitutivity that S is a subtype of T
if and only if any S can be used in place of a T.

Variance describes subtyping for parameterized types, where type parameters may be
covariant, contravariant or invariant.
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Review

Hindley-Milner is a way to type parametric polymorphism in the lambda-calculus, introducing
type schemes to generalise types and let-binding syntax to use polymorphic functions.

Type Inference makes it possible to write strongly-typed polymorphic code that is expressive
but uncluttered by type annotations; while “Algorithm W” automatically identifies a
principle type that is the most general type possible for a term.

Rank-2 types and beyond describe things not reachable in Hindley-Milner: while type schemes
can describe a whole collection of types, sometimes we want to go further and have
functions demand arguments that are themselves polymorphic.
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Review

System F with type parameterization for polymorphic terms, so that ∀X.A is a type,
ΛX.M : ∀X.A and if F : ∀X.B then F A : B{A/X}.

Encoding datatypes in System F, like Prod X Y = ∀Z.((X→Y→Z)→ Z).

Beyond System F with bounded and F-bounded quantification, F<:, F2 and Fω.
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Dependencies So Far

So far in constructing terms and types of the lambda-calculus and its various extension we have
seen the following different interactions between types and terms.

First-class functions λx:A.M : A→ B Terms that depend on terms
Parameterized types Set<String>, Tree : ∗ -> ∗ Types that depend on types
Polymorphic terms reverse : ∀A(listA→ listA) Terms that depend on types

From these we can conjecture a natural fourth kind of dependency, which is the topic of this
lecture.

Dependent types [[1, 2, 3], [4, 5, 6]] : Matrix 2 3 Types that depend on terms.
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Example: Matrices and Vectors
Dependent types allow us to give precise types to terms such as these:

[[1, 2, 3], [4, 5, 6]] : Matrix 2 3 Matrix : Num→ Num→ ∗
identity-matrix n : Matrix n n

matrix-invert : ∀n:Num . (Matrix n n→ Matrix n n)
matrix-multiply : ∀n,m,p : Num . (Matrix nm→ Matrixmp→ Matrix n p)

Type-checking then ensures that the operations of matrix inversion and multiplication are
applied only to matrices with an appropriate number of rows and columns.
These next examples, this time for fixed-length vectors of values, combine dependent types with
polymorphism and also arithmetic within the types.

['c', 'a', 't'] : Vec Char 3 Vec : ∗ → Num→ ∗
vector-map : ∀X, Y . (X→ Y)→ ∀n:Num . (Vec X n→ Vec Y n)

vector-append : ∀A . ∀n,m : Num . VecA n→ VecAm→ VecA (n+m)
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Example: Safe Indexing

Another kind of dependent type is exemplified by the constructor EQ : Num→ Num→ ∗ where
EQ nm contains exactly one element if n = m and is empty if n 6= m. This is known as the
identity type or equality type.

Similar type constructors LT nm and LE nm are equivalent to the one-element unit type 1 or
empty zero type 0 according to whether or not n < m or n 6 m.

With these we can write a desired type for safe indexing into a fixed-length vector.

vector-get : ∀X . ∀i:Num . ∀n:Num . (LE 0 i)→ (LT i n)→ (Vec X n)→ X

In principle types like this allow compile-time checking of array bounds, and languages like
Dependent ML have been implemented using this approach.

The challenge, though, is to make this manageable for the programmer by inferring types,
values and proofs wherever possible, and automatically inserting them as implicit arguments.
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Rules for Dependent Function Types

Types

Dependent Function Type

Γ , x : A ` Type B
Γ ` Type ∀x:A.B

Note that the dependent type B
may mention x or any other variable
from the context Γ .

Terms
Variable

Γ ` x : A x : A ∈ Γ

Abstraction Γ , x : A `M : B
Γ ` (λx:A.M) : ∀x:A.B

Application Γ ` F : ∀x:A.B Γ `M : A
Γ ` FM : B{M/x}

Where type B does not in fact depend on parameter x, then we can write the type (∀x:A.B) as
(A→ B) and it behaves just like the simple function space.
The beta-reduction rule for dependent functions is exactly as for simple functions.

Beta-Reduction (λx:A.M)N −→ M[N/x]
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Dependent Pairs

In a dependent pair the type of the second component may depend on the value of the first. For
example, consider a function that transforms a list of arbitrary length into a fixed-length vector.

vector-create : ListA→ (∃n:Num . VecA n)

Dependent pair type (∃n:Num . VecA n) packages up a number n with a vector of length n.

( 3, ['c', 'a', 't'] ) : (∃n:Num . Vec Char n)

These dependent pairs can also be useful as input types. For example:

vector-filter : ∀X . (X→ Bool)→ (∃n:Num . Vec X n)→ (∃m:Num . Vec Xm)
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Rules for Dependent Pair Types

Types

Dependent Pair Type

Γ , x : A ` Type B
Γ ` Type ∃x:A.B

Note that the dependent type B
may mention x or any other variable
from the context Γ .

Terms

Pairing Γ `M : A Γ , x : A ` N : B
Γ ` (M,N) : ∃x:A.B

Left Projection Γ ` P : ∃x:A.B
Γ ` fst(P) : A

Right Projection Γ ` P : ∃x:A.B
Γ ` snd(P) : B{fst(P)/x}

Where type B does not in fact depend on parameter x, then we can write the type (∃x:A.B) as
(A× B) and it behaves just like the simple pairing.
The reduction rules for dependent pairs are again just as in the simply-typed version.

fst(M,N) −→ M snd(M,N) −→ N
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Many Variations on a Theme

Dependent types appear in many, many different type systems, often in combination with
several of the features from System F and its extensions.
All are captured under the broad heading of “Type Theory”, and have applications across
computer science, logic, and even into linguistic theories of natural language.
Reflecting this variety, the basic type constructions appear in many syntactic forms. For
example:

Function Type

∀x:A.B
Πx:A.B

(x:A)→ B

{x:A}B

Pair Type

∃x:A.B
Σx:A.B

(x:A)× B
〈x:A〉B
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A Small Language

Lam

Consider the following very small typed functional language:

Types τ ::= ι | o | τ→ τ

Terms M ::= cτ | xτ | λxτ.M | MM

Here ι is a type of integers, o a type of booleans, cτ represents a
constant of type τ and xτ a variable of type τ.

Suppose that we wish to work with Lam types and terms as an object language within some
host programming language, the meta language.

We shall do this using a deep embedding, where we directly manipulate object language syntax.
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Lam: Simple Types

With a simply-typed programming language, we can define datatypes “LamType”,
“LamVar” and “LamTerm” for Lam types, variables and terms, with the following
useful operations.

data LamType = I | O | Fun LamType LamType
data LamVar = MkVar String

data LamTerm = LamV LamVar | LamI Int | LamO Bool
| LamLam LamVar LamTerm | LamApp LamTerm LamTerm

With these we also need a function to check that the Lam terms we build are well-typed.

lamcheck : LamTerm -> Bool

This recursively traverses the term to make sure all values are used with their correct types.
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Lam: Simple Types

With a simply-typed programming language, we can define datatypes “LamType”,
“LamVar” and “LamTerm” for Lam types, variables and terms, with the following
useful operations.

i, o : LamType lamv : LamVar→ LamTerm
fun : LamType→ LamType→ LamType lami : Num→ LamTerm

lamo : Bool→ LamTerm
mkvar : String→ LamVar lamlam : LamVar→ LamTerm→ LamTerm

lamapp : LamTerm→ LamTerm→ LamTerm

With these we also need a function to check that the Lam terms we build are well-typed.

lamcheck : LamTerm→ Bool

This recursively traverses the term to make sure all values are used with their correct types.
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Lam: Dependent Types

With a dependently-typed host language, we can define datatypes that correctly
record the Lam type structure: with LamVar(t) and LamTerm(t) recording the
type t of the variable or term being represented.

i, o : LamType lamv : ∀t:LamType.LamVar(t)→ LamTerm(t)

fun : LamType→ LamType→ LamType lami : Num→ LamTerm(i)
mkvar : ∀t:LamType.(String→ LamVar(t)) lamo : Bool→ LamTerm(o)

lamlam : ∀(s, t : LamType) . (LamVar(s)→ LamTerm(t)→ LamTerm(fun s t))
lamapp : ∀(s, t : LamType) . (LamTerm(fun s t)→ LamTerm(s)→ LamTerm(t))

We now have that wheneverM : LamTerm(t), the valueM is a correctly-typed Lam term, of the
type given by t : LamType.
Programs in the host language can be statically type-checked so that all code handling the object
language respects Lam type-correctness.
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A Small Logic
We can carry out a similar embedding of logic within a host language, say with a type “Prop”
of propositions and the following term constructors:

true : Prop and : Prop→ Prop→ Prop not : Prop→ Prop
false : Prop or : Prop→ Prop→ Prop imp : Prop→ Prop→ Prop

With a dependent type constructor “ProofOf : Prop→ ∗” we can build logical proofs:
conj : ∀(P,Q : Prop) . (ProofOf(P)→ ProofOf(Q)→ ProofOf(and P Q))

proj1 : ∀(P,Q : Prop) . (ProofOf(and P Q)→ ProofOf(P))
triv : ProofOf(true) . . . and other terms capturing rules of logical deduction

If P : Prop then any value M : ProofOf(P) must be a valid proof of the proposition P. The host
language typechecker validates all steps of the logical proof.

Orwell: The purpose of Newspeak was not only to provide a medium of expression for the world-view and mental
habits proper to the devotees of Ingsoc, but to make all other modes of thought impossible. [1984]
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An Observation on the Embedded Small Logic

Here are some functions in the host language where we have embedded our small logic.

conj : ∀(P,Q : Prop) . (ProofOf(P)→ ProofOf(Q)→ ProofOf(and P Q))

proj1 : ∀(P,Q : Prop) . (ProofOf(and P Q)→ ProofOf(P))
proj2 : ∀(P,Q : Prop) . (ProofOf(and P Q)→ ProofOf(Q))

Composing these in appropriate combinations reveals an equivalence of types:

ProofOf(and P Q) ←→ ProofOf(P)× ProofOf(Q)

Informally, having a proof of (P ∧Q) is equivalent to having a proof of P and also a proof of Q.

This only works when we give an intuitionistic, or constructive,
meaning to logic. Other interpretations are available.
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Correspondence

This equivalence of types works for other logical connectives, too:

ProofOf(and P Q) ←→ ProofOf(P)× ProofOf(Q)

ProofOf(or P Q) ←→ ProofOf(P) + ProofOf(Q)

ProofOf(imp P Q) ←→ ProofOf(P)→ ProofOf(Q)

This connection is a manifestation of the Curry-Howard correspondence or propositions-as-types.

Curry-Howard exposes a close link between the logic and the structure of proofs on one hand,
and computer programs and their execution on the other. The correspondence works at many
levels and has been an extremely rich source of new ideas in both programming languages and
mathematical logic.
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Examples of Curry-Howard

Propositions vs. Types
Propositional Logic True 1 Simple Types

False 0
Logical connectives P ∧Q A× B Type constructors

P ∨Q A+ B

P ⇒ Q A→ B

Predicate Logic P(x) A(x) Dependent Types
Quantification ∀x∈A.Q(x) ∀x:A.B(x)

∃x∈A.Q(x) ∃x:A.B(x)

Types ←→ Propositions
Terms, Programs ←→ Proofs

Term reduction, program execution ←→ Proof rewriting, transformation
Ian Stark APL / Lecture 7: Dependent Types 2018-10-08



Outline

1 Opening

2 Types that Depend on Terms

3 Embedding Domain-Specific Languages

4 Propositions as Types

5 Dependent Types and Proof

6 Closing

Ian Stark APL / Lecture 7: Dependent Types 2018-10-08



Programming Languages for Mathematical Proof

With the small logic earlier we had an embedding of propositions and proofs using types “Prop”
and “ProofOf(P)”. This approach can be extended to cover a wide range of proofs in logic and
mathematics. For example, if A is a type and term P : A→ Prop is a predicate on values of
type A, then consider the dependent type:

∃(x : A) . (ProofOf(P(x)))

A value of this type is a pair of an element of A with a proof that it satisfies property P. This
captures the set comprehension construction:

{ x ∈ A | P(x) } ⊆ A

It is also an example of a refinement type in a programming language.

The same idea can be further used to model other constructions in set theory.
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Programming Languages for Mathematical Proof
Building logic and proof using dependent types within a host programming language is an
effective way to construct large mathematical proofs: the machine assists both in creating the
proofs, and automatically ensuring their correctness through typechecking.

Turing on why writing programs will always be interesting
. . . There need be no real danger of it ever becoming a drudge, for any processes that are quite
mechanical may be turned over to the machine itself.

This approach has been promoted by several theorem-proving systems, including the Edinburgh
Logical Framework, Twelf, Alf, and Coq.

Coq was used in Gonthier’s machine-checked proof of the four-colour theorem; and by Leroy to
create the verified CompCert C compiler.

However, the Flyspeck proof of Kepler’s conjecture and the seL4 verified kernel
both use a slightly different approach based on Higher-Order Logic
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Writing Verified Programs

With a programming language and a logic both embedded as object-languages within a
dependently-typed metalanguage, it is possible to specify and verify programs entirely through
static type-checking.

However, it’s also possible to apply this to the host language itself: to build a
dependently-typed language that is suitable for proving theorems, writing programs, and in
particular proving that those programs are correct.

This the approach of the Agda, Epigram and Idris programming languages.

Some other functional languages use dependent types to increase the expressiveness and
precision of the type system: not necessarily proving mathematical theorems or functional
correctness (although they may do that too), but developing the idea of static typing as a way
to improve program quality. Examples include Dependent ML, Cayenne, extensive work on
dependently-typed Haskell, and F?.
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Summary

Dependent function types ∀x:A.B and pair types ∃x:A.B complete the possible
dependencies of {types, terms} on {types, terms}.

Numerical examples of dependent types include fixed-length vectors and m× n matrices.
Type-checking then ensures compatible lengths or dimensions.

With deep embedding of an object language in a dependently-typed host language, types
can be used to automatically check object-language properties.

A key example is machine-assisted theorem proving: constructing and checking proofs of
logical statements within a host programming language.

This is linked to the Curry-Howard correspondence between propositions and types, proofs
and terms.

Arising from this are a spectrum of languages from proof-assistants like Coq to
dependently-typed programming languages like F?.
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Homework

1. Read This
The instructions for the APL written coursework assignment. https://is.gd/apl18coursework

2. Write This
The outline draft for your assignment, following in detail the instructions above.
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PL Events on Tuesday (1/2) !

Ada Lovelace Day 2018
Murchison House, King’s Buildings

Tuesday 9 October 2018

https://is.gd/lovelace2018 Sydney Padua: 2D Goggles

11.00–2.30 Talks, activities, technology, building things
2.30–5.30 Women in STEM Wikipedia edit-a-thon
5.45–7.30 Discussion and networking event

Ada Lovelace Day is an international celebration day of the achievements of women in science, technology,
engineering and maths (STEM). It aims to increase the profile of women in STEM and, in doing so, create new
role models who will encourage more girls into STEM careers and support women already working in STEM.

http://findingada.com
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PL Events on Tuesday (2/2) !

Elm:Taming the Wild West Web using Functional
Programming

Rupert Smith
7pm Tuesday 9 October 2018

The Outhouse, 12A Broughton Street Lane

http://www.edlambda.co.uk

This is the monthly meetup of EdLambda, an Edinburgh group for people interested in
functional programming. APL students are very welcome to come along.
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