
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl

Advances in Programming Languages
Lecture 9: Concurrency Abstractions

Ian Stark

School of Informatics
The University of Edinburgh

Monday 15 October 2018
Semester 1 Week 5

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Outline

1 Opening

2 Races

3 Helpful Abstractions

4 Closing

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Outline

1 Opening

2 Races

3 Helpful Abstractions

4 Closing

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Programming-Language Techniques for concurrency

This is the second of a block of lectures looking at programming-language techniques for
concurrent programs and concurrent architectures.

Introduction, basic Java concurrency

Concurrency abstractions

Concurrency in different languages

Current challenges in concurrency

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Basic Java Concurrency
Java provides basic concurrency mechanisms as standard.

Threads Encapsulated in class Thread, these can run arbitrary code, share data, spawn
subthreads and wait for children.

Scheduler Each Java runtime determines the degree and style of concurrency available on a
particular platform.

Locks Every object has an intrinsic lock, which synchronized methods must acquire before
execution to ensure mutual exclusion. Explicit locking allows finer delineation of
critical regions.

Condition Variables Every object is a monitor, with wait() to block and notify()/notifyAll() to
communicate between threads.

This language support is enough to write safe concurrent code and implement sophisticated
concurrent algorithms. In particular, locks and condition variables avoid the need for
busy-waiting and spin-lock loops.
Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Homework from Thursday

1. Do This
Find out what a data race is. What happens to C or C++ code with a data race?

2. Read This
Read the first three sections of the Java Concurrency tutorial.

http://java.sun.com/docs/books/tutorial/essential/concurrency

Processes and Threads Thread Objects Synchronization

Have another Java concurrency tutorial to recommend? Great! Post on Piazza or mail me.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15

http://java.sun.com/docs/books/tutorial/essential/concurrency


Outline

1 Opening

2 Races

3 Helpful Abstractions

4 Closing

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Racing

Race Condition

A race condition (or just a race) in software or hardware is a
situation where certain events may happen in different orders and
some outcome depends on what that order turns out to be.

This is a very general term. A race is likely to be a problem if the
system depends on things happening in one particular order, but
there is no way to control that order.

Tony Hisgett, Flickr ThinCat, Wikipedia

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15

https://www.flickr.com/photos/hisgett/5673426479/
https://www.flickr.com/photos/hisgett/5673426479/
https://en.wikipedia.org/wiki/Race_to_the_North
https://en.wikipedia.org/wiki/User:Thincat


http://arstechnica.com/security/2016/10/most-serious-linux-privilege-escalation-bug-ever-is-under-active-exploit/






https://nvd.nist.gov/vuln/detail/CVE-2018-6693


https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/27000/PD27640/en_US/ensl_1050_pg_0-00_en-us.pdf


Racing

Data Race
A data race is more precisely defined. It is a situation where a program contains two memory
accesses with the following properties:

They happen in different threads;
Both target the same memory location;
At least one is a write operation;
There is no concurrency control to make sure they don’t happen at the same time.

If Java code contains a data race, then some high-level guarantees about sensible multicore
memory behaviour are lost. Specifically sequential consistency

If C/C++ code contains a data race, then the behaviour of that code is undefined. Really,
really undefined: a standards-compliant compiler can do absolutely anything at all.

“Permissible undefined behavior ranges from ignoring the situation completely
with unpredictable results, to having demons fly out of your nose.”

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Data Races in the C++ Language Standard
Data Race

Undefined Behaviour

Undefined behavior can result in time travel
Post on “The Old New Thing” blog by Raymond Chen, Microsoft, June 2014

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Data Races and Thread Safety

Racy code can lead to consistency problems and other errors, some of which may even depend
on scheduler and platform details.

It’s important to identify classes that are thread safe: where methods run correctly in the
presence of other threads, and even when called simultaneously from different concurrent
threads.

Java threads and locks make it possible to write such code, and particular idioms or patterns
can help to do so correctly. For example:

An immutable object cannot be modified once constructed. Functional languages deal
almost exclusively in immutable values; Java uses this pattern in libraries like String.

Restricting field access to synchronized methods that get, set and update values can help
to make a class thread safe.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Outline

1 Opening

2 Races

3 Helpful Abstractions

4 Closing

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Synchronization Wrappers
The Java Collections class provides several general operations on collections. The
synchronizedXYZ(...) wrapper methods return thread-hardened versions of existing collections.

From class java. util .Collections
List unsafelist = new ArrayList();

unsafelist .add("This"); // This is only safe if no other
unsafelist .add("That"); // thread can access the list

List list = Collections.synchronizedList(unsafelist); // Thread-safe version of the list

// We can safely start two concurrent threads where both have access to the list
... | ...
list .add("Things"); | list .add("Thing 1"); // No need to synchronize
int n = list. size (); | list .add("Thing 2");

// Result n could be 3, 4, or 5, but the list will remain consistent.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Concurrent collections

Making more methods synchronized may give safer code, but it can also become a serious
bottleneck and reduce the benefits of concurrency, or even lead to complete deadlock.

Synchronization wrappers on existing collections can help — they will only add locks where
needed, but even this can slow things down.

Java 5 introduced concurrent collections, bringing in both new algorithms and new ways to use
collections effectively in a threaded environment.

Interfaces
ConcurrentMap
BlockingQueue
BlockingDeque
TransferQueue

Classes
ConcurrentHashMap
ConcurrentLinkedQueue
CopyOnWriteArrayList
ArrayBlockingQueue etc.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Example: Producer/Consumer Pattern (1/2)

The producer-consumer pattern is a way to decouple tasks
and achieve scalable parallelism.

A queue allows independent tasks to proceed on each side
without interfering. Consumers block when the queue is
empty; producers block when the queue is full.

Producer
threads

Consumer
threadsQueue

If we just used a regular queue, then simultaneous actions by multiple producer and consumer
threads may leave its internal datastructures in an inconsistent state.

To make this thread-safe we could wrap it to make all uses of the queue synchronized. That
works, but the access lock is then a bottleneck for responsive concurrency.

A smarter implementation can support simultaneous access to both ends of the queue — for
example, with separate locks for adding and removing elements.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Example: Producer/Consumer Pattern (1/2)

Implementations of the Java BlockingQueue provide a
highly-concurrent thread-safe queue.

They also support concurrency-aware programming by of-
fering different suites of methods for different concurrency
scenarios.

Producer
threads

Consumer
threadsQueue

All approaches offer ways to insert, remove and examine queue items. The difference is in what
happens when these cannot work because the queue is full or empty.

java. util .concurrent.BlockingQueue
Exception Option Block Timeout

Operation: Insert add(e) offer(e) put(e) offer(e, time, unit)
Remove remove() poll() take() poll(time, unit)
Examine element() peek() – –

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Quiz

The java. util .concurrent package was introduced in Java 5. With the release of Java 7 it
included a new class with a special concurrent algorithm to do one of the following. Which one,
and why?

A Write the system clock.

B Generate a pseudo-random number.

C Read the current heap size.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadLocalRandom.html


More Elaborate Concurrency
The java. util .concurrent package includes a wide range of more sophisticated concurrency
idioms that enhance Java’s standard threads, locks and monitors.

Locks — Re-entrant locks, read-write locks, condition variables.
Executors — Thread factories, thread pools, alternative scheduling.
Fork/Join — Managing large numbers of concurrent lightweight tasks.
Futures — Asynchronous computations returning values.

Synchronizers — Semaphores, latches, barriers, phasers, exchangers.

Note that this is still a library: all can be implemented using the standard Java concurrency
primitives. Compared to writing these yourself, though:

The library is tried, tested, and maintained;
The algorithms support a high degree of concurrency.
On some platforms they may be able to use additional low-level concurrency support.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



When Racy Code is Good — From java.lang.String source code (JDK 8)

0111 public final class String {
...
0114 private final char value[];
...
0117 private int hash; // Default to 0
...
1452 public int hashCode() {
1453 int h = hash;
1454 if (h == 0 && value.length > 0) {
1455 char val[] = value;
1456
1457 for (int i = 0; i < value.length; i++) {
1458 h = 31 ∗ h + val[i];
1459 }
1460 hash = h;
1461 }
1462 return h;
1463 }

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Outline

1 Opening

2 Races

3 Helpful Abstractions

4 Closing

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Summary

Java provides threads, locks and monitors as language primitives.

These are sufficient to write explicitly concurrent code.

They also allow all kinds of bad things: interference; deadlock; livelock; . . .

Writing thread-safe code is possibly, just tricky.

Patterns can help: immutability, atomicity, synchronization wrappers.

Java’s concurrent collections are thread-safe and add performance.

Java’s concurrency libraries add many more concurrency idioms.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Homework
1. Do this
Find out what the addAndGet method on a Java AtomicLong object does. Why is that useful?
Java 8 introduced a LongAdder class. Find out what it does, and how it can make code faster.

2. Read this
The remaining sections of the Java Concurrency tutorial

http://java.sun.com/docs/books/tutorial/essential/concurrency

Liveness
Guarded Blocks
Immutable Objects
High Level Concurrency

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15

http://java.sun.com/docs/books/tutorial/essential/concurrency


A simple blocking method !

class Pigeonhole {

private Object contents = null;

synchronized void put (Object o) {

while (contents != null) // Wait until the pigeonhole is empty
try { wait(); }
catch (InterruptedException ignore) { return; }

contents = o; // Fill the pigeonhole
notifyAll(); // Tell anyone who might be interested

}
...

}
Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



Optional Coding Exercise !

Extend the Pigeonhole class to include methods to check whether there is anything in the
pigeonhole, and to release the contents of the pigeonhole.

Write a PigeonFancier program that:

Has a fixed number of pigeon-holes which are emptied by some dedicated pigeon-handler
threads releasing pigeons after random delays;

Has a single thread which regularly puts new pigeons into empty holes;

Make sure the pigeon stuffer doesn’t wait too long for any hole to become empty.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15



References

Brian Goetz, Time Peierls, Joshua Block, Joseph Bowbeer, David Holmes and Doug Lea.
Java Concurrency In Practice.
Addison Wesley, 2006.
Current essential reference for concurrent Java programming.

Doug Lea.
Concurrent Programming in Java: Design Principles and Patterns.
Second Edition. Addison-Wesley, 1999.
The original standard text, describing many of the patterns now implemented inside
java.util.concurrent, and some of the horrors of the Java Memory Model.

Ian Stark APL / Lecture 9: Concurrency Abstractions 2018-10-15


	Opening
	Races
	Helpful Abstractions
	Closing

