
Foundational Calculi for Programming Languages

�To appear in the CRC Handbook of Computer Science and Engineering�

Benjamin C� Pierce�

December ��� ����

� Introduction

In the mid ����s� Landin observed that a complex programming language can be understood
in terms of a tiny �core language� capturing the essential mechanisms of some programming�
style together with a collection of convenient �derived forms� whose behavior is understood by
translating them into the core 	cf
 �Tennent� �����
 Landin�s core language was the lambda�
calculus� a formal system in which all computation is reduced to the basic operations of function
de�nition and application
 Since the ��s� the lambda�calculus has seen widespread use in the
speci�cation of programming language features� language design and implementation� and the
study of type systems
 Its importance arises from the fact that it can be viewed simultane�
ously as a simple programming language in which computations can be described and as a
mathematical object about which rigorous statements can be proved

The lambda�calculus has a strong claim to be a canonical model of purely functional com�
putation 	the programming paradigm where the only observable properties of an expression
are its behavior when applied to arguments�
 Not only does it capture the ideas of function
de�nition and application in a clear� intuitive way� but all other known models of functional
computation � Turing Machines� general recursive functions� control structures such as while
and goto� etc
 � can be shown to describe exactly the same class of functions
 	For a survey
of these results� see �Davis� ����
� For concurrent and distributed systems� no such canoni�
cal model has yet emerged
 Instead� many di�erent �process calculi� are being studied� each
embodying some particular set of primitives for concurrent computation

This chapter sketches the de�nitions and some basic properties of the lambda�calculus and
a representative process calculus called the pi�calculus

� Lambda�Calculus

Procedural abstraction is a key feature of most programming languages
 Instead of writing the
same calculation over and over� we write a procedure or function that performs the calculation
abstractly� in terms of one or more named parameters� which we instantiate as needed� providing
values for the parameters in each case
 For example� we might rewrite an expression like
	� � � � � � � � �� � 	� � � � � � � � � � � � ��� 	� � � � �� as Factorial	�� � Factorial	��� Factorial	���

�University of Cambridge� Computer Laboratory� New Museums Site� Pembroke Street� Cambridge� CB�

�QG� U�K�

�

Syntax�
L�M�N ��� x variable

MN application
�x�M abstraction

Free variables�
FV 	x� � fxg

FV 	M N� � FV 	M�� FV 	N�
FV 	�x�M� � FV 	M�� fxg

Substitution�

�N�xx � N

�N�xz � z if z �� x
�N�x	LM� � 	�N�xL� 	�N�xM�

�N�x	�z�M� � �z� 	�N�xM� if z �� x and z �� FV 	N�

Renaming of bound variables�

�x�M � �y� 	�y�xM� if y �� FV 	M�

Operational Semantics�

	�x�M�N �� �N�xM function application 	�beta�reduction��

Figure �� Syntax and Operational Semantics of the Lambda�Calculus

where
Factorial	n� � if n � � then � else n � Factorial	n � � ��

For each nonnegative number n� instantiating the function Factorial with the argument n yields
a number� the factorial of n� as result
 Writing ��n�� as a shorthand for �the function that�
for each n� yields

�� we can restate the de�nition of Factorial as

Factorial � �n� if n � � then � else n � Factorial	n � � ��

The expression Factorial	� � is now read as �the function ��n� if n � � then � else etc�� ap�
plied to the argument ��� i
e
� �the value that results when the bound variable n in the function
body �if n � � then � else etc�� is replaced by ��� i
e
 �if � � � then � else etc��� i
e
 �

In the ����s� Church invented a mathematical system called the lambda�calculus 	or ��
calculus� that embodies this kind of function de�nition and application in a pure form
 In the
lambda�calculus everything is a function� the arguments accepted by functions are themselves
functions and the result returned by a function is another function

��� Syntax and Operational Semantics

The syntax of the lambda�calculus comprises the three forms of expression at the top of Figure �

A variable x by itself is a lambda�expression� the application of a lambda�expression M to
another lambda�expression N � written M N � is a lambda�expression� and the abstraction of a
variable x from a lambda�expression M � written �x�M � is a lambda�expression
 L� M � and N

are used throughout this chapter to stand for arbitrary lambda�expressions
 To avoid writing

�

too many parentheses� application is taken to be left�associative� so that LM N is the same
as 	LM�N � and the bodies of abstractions extend as far to the right as possible� so that
�x� �y� x yx is the same as �x� 	�y� 		x y�x��
 The variable x is said to be bound in the body
M of �x�M

In its pure form� the lambda�calculus has no built�in constants or operators � no numbers�
arithmetic operations� records� loops� sequencing� I�O� etc
 The sole means by which expres�
sions �compute� is the application of functions to arguments� which is captured formally by
the rule at the bottom of Figure �� traditionally called beta�reduction
 This rule says that
an expression can be reduced by replacing some subexpression of the form 	�x�M�N � called a
redex� by the result of substituting the argument N for the bound variable x in the body M

For example� 	�x� x y� 	uv� reduces to u v y� while 	�x� �y� x� zw reduces 	by the underlined
redex� to 	�y� z�w� which further reduces to z
 We write 	�x� �y� x� zw ��� z to show that
the �rst expression reduces to the second by some sequence of steps of reduction

The notion of reduction gives rise to a natural de�nition of what it means for two expressions
to be �the same modulo reduction
� M and N are beta�convertible� written M �� N � if
they are identical� or if one reduces to the other� or if they are each convertible to some
third expression L
 	Formally� this is summarized by saying that the beta�conversion relation
is the re�exive� symmetric� transitive closure of beta�reduction
� For example� 	�x� x� z and
	�x� �y� x� zw are convertible because they both reduce to z

To make the notions of beta�reduction and conversion completely precise� there is a little
technical work to be done
 In particular� we must de�ne the substitution notation �N�xM

The details� which can be skipped on a �rst reading� occupy the rest of Figure � and of this
subsection

First� we say what it means for a variable x to be free in an expression M � namely� that x
appears at some position in M where it is not bound by an enclosing lambda�abstraction on
x
 	For example� x is free in x y and �y� x y� but not in �x� x or �z� �x� �y� x y z
�

An important syntactic convention concerns the inessentiality of bound names
 Intuitively�
it is clear that the expressions �x� x and �y� y describe exactly the same function � the function
that� given any argument N � returns N
 The fact that we use x in one case and y in the other
to stand for the argument in the body is of no consequence
 This principle is captured by the
rule of renaming of bound variables 	often called alpha�conversion� on the second line
from the bottom of Figure �� which states that we may freely replace the bound variable x by
another variable y in a lambda�abstraction �x�M as long as y is not among the free variables
of M
 	The side condition is needed because� for example� we do not want to consider �x� y
and �y� y to be the same function
�

Now we de�ne substitution
 Substituting an expression N for a variable x in an expression
consisting only of x itself yields N
 Substituting N for x in an expression consisting only of
a di�erent variable z yields z
 To substitute N for x in an application M L� we substitute
in M and L separately
 To substitute N for x in a lambda�abstraction �z�M � we substitute
in the body M � however� we do this only when z is not the same as x and z is not one of
the free variables of N
 The �rst part of this side condition ensures that we do not allow
nonsensical reductions like 	�x� �x� x� y �� �x� y� where x is replaced by y even though it is
actually bound by an inner abstraction� not the one being reduced
 The second prevents a
similar kind of mistake where free variables of N are �captured� by abstractions inside a term
being substituted into� resulting in reductions like 	�x� �y� x� y �� �y� y

Thus� strictly speaking� the substitution �N�xM is unde�ned for some values of N � x�
and M
 But it is always possible to change the names of bound variables in N and�or M so

�

that the substitution makes sense
 For example� we can rewrite �y�x	�x� x� as �y�x	�z� z��
which� by the de�nition of substitution� equals �z� z� after renaming the bound variable again�
this is the same as �x� x
 It is common practice to elide the renaming steps and say that
�y�x	�x� x� � �x� x

��� Examples

The lambda�calculus is much more powerful than its tiny de�nition might suggest
 For example�
there is no built�in provision for multi�argument functions� but it is easy to achieve the same
e�ect using higher�order functions that yield functions as results
 Suppose that M is an
expression involving two free variables x and y and we want to write a function F that� for
each pair 	N�L� of arguments� yields the result of substituting N for x and L for y in M

Instead of writing F � �	x� y��M � as we might in a higher�level programming language� we
write F � �x� �y�M � that is� F is a function that� given a value N for x� yields a function
that� given a value L for y� yields the desired result
 We then apply F to its arguments
one at a time� writing F N L� which reduces to 	�y� �N�xM�L and then to �L�y�N�xM

This transformation of multi�argument functions into higher�order functions is often called
Currying after its popularizer� Curry
 	It was actually invented by Sch on�nkel� but the term
�Sch on�nkeling� has not caught on
�

Another common language feature that can easily be encoded in the lambda�calculus is
boolean values and conditionals
 De�ne the lambda�expressions True and False as follows�

True � �t� �f� t

False � �t� �f� f

Both of these expressions are combinators� that is� neither contains any free variables
 This
means that they are inert with respect to substitution� �N�xTrue � True no matter what
N and x are
 The only way to �interact� with combinators is by applying them to other
expressions
 For example� we can use application to de�ne a combinator If with the property
that If L M N reduces to M when L � True and reduces to N when L � False

If � �l � �m� �n� l m n

The If combinator does not actually do much� If L M N means just L M N
 In e�ect� the
boolean value L itself is the conditional� it takes two arguments and chooses the �rst 	if it
is True� or the second 	if it is False�
 For example� the expression If True M N reduces as
follows�

If True M N � 	�l� �m� �n� l m n� True M N by de�nition

�� 	�m� �n�True m n� M N reducing the underlined redex

�� 	�n�True M n� N reducing the underlined redex

�� True M N reducing the underlined redex
� 	�t� �f� t� M N by de�nition

�� 	�f�M� N reducing the underlined redex

�� M reducing the underlined redex

	Strictly speaking� this calculation is only valid if the variables n� t� and f are not free in M

or N � otherwise� some extra renaming steps are required
�
We can also write boolean operators like logical�and as functions�

And � �b� �c� b c False

�

That is� And is a function that� given two boolean arguments b and c� returns either c 	if b is
True� or False 	if b is False�� thus And b c yields True if and only if both b and c are True

Using booleans� we can encode pairs of values as lambda�expressions
 De�ne�

Pair � �f� �s� �b� b f s

Fst � �p� pTrue
Snd � �p� pFalse

That is� Pair M N is a function that� when applied to a boolean b� applies b to M and N
 By
the de�nition of booleans� this application yields M if b is True and N if b is False� so the
�rst and second projection functions Fst and Snd can be implemented simply by supplying the
appropriate boolean
 To check that Fst 	Pair M N � �� M � calculate as follows�

Fst 	Pair M N� � Fst 		�f� �s� �b� b f s� M N� by de�nition

�� Fst 		�s� �b� bM s� N� reducing the underlined redex

�� Fst 	�b� bMN� reducing the underlined redex
� 	�p� pTrue� 	�b� bMN� by de�nition

�� 	�b� bMN�True reducing the underlined redex

�� TrueM N reducing the underlined redex
��� M as above

The encoding of numbers as lambda�expressions is only slightly more intricate
 De�ne the
Church Numerals C�� C�� C�� etc
� as follows�

C� � �z� �s� z
C� � �z� �s� s z

C� � �z� �s� s 	s z�

Cn � �z� �s� s 	s 	� � �	s
� �z �

n times

z�� � � ��

That is� each number n is represented by a combinator Cn that takes two arguments� z and
s 	�zero� and �successor��� and applies n copies of s to z
 As with booleans and pairs� this
encoding makes numbers into active entities� the number n is represented by a function that
does something n times � a kind of active unary numeral

We can de�ne some common arithmetic operations on Church numerals as follows�

Plus � �m� �n� �z� �s�m 	n z s� s
Times � �m� �n� mC� 	Plus n�

Here� Plus is a combinator that takes two Church numerals� m and n� as arguments� and yields
another Church numeral � i
e
� a function that accepts arguments z and s� applies s iterated
n times to z 	by passing s and z as arguments to n�� and then applies s iterated m more times
to the result
 It is an instructive exercise to check� for example� that Plus C� C� �� C�
 The
de�nition of Times uses another trick� since Plus takes its arguments one at a time� applying it
to just one argument n yields the function that adds n to whatever argument it is given
 Passing
this function as the second argument to m and zero as the �rst argument means �apply the
function that adds n to its argument� iterated m times� to zero�� i
e
� �add together m copies
of n
�

�

To test whether a Church numeral is zero� we must give it a pair of arguments Z and S

such that applying S to Z one or more times yields False� while not applying it at all yields
True
 Clearly� we can take Z to be just True
 As for S� we use a function that throws away
its argument and always returns False

IsZero � �m� mTrue 	�x�False�

Surprisingly� it is quite a bit more di!cult to subtract using Church numerals
 It can be done
using the following rather impenetrable �predecessor function�� which� given C� as argument�
returns C� and� given Ci��� returns Ci�

Pred � �m� Fst 	m Z S�
where Z � Pair C� C�

S � �p� Pair 	Snd p� 	Plus 	Snd p� C��

This de�nition works by using m as a function to apply m copies of the function S to the
starting value Z
 Each copy of S takes a pair of numerals 	Pair Ci Cj � as its argument and
yields 	Pair Cj Cj�� � as its result
 So applying S m times to 	Pair C� C� � yields 	Pair C� C� �
if m � � and 	Pair Cm�� Cm� otherwise
 In both cases� the predecessor of m is found in the
�rst component

Other common datatypes like lists� trees� arrays� and variant records can be encoded using
similar techniques
 Of course� in most programming languages based on the lambda�calculus�
such basic data types are added as primitive constants� rather than being encoded

A lambda�expression containing no redexes is said to be in normal form
 The lambda�
expressions we have seen so far have all shared the property that� independent of the order in
which redexes are chosen for reduction� eventually all the redexes are used up and a normal form
is reached
 But not all lambda�expressions have this property
 For example� the divergent
combinator

" � 	�x� x x� 	�x� x x�

can never be reduced to a normal form
 It contains just one redex� and reducing this redex
yields exactly " again#

A similar but more useful example is the so�called Y combinator� which can be used to
de�ne recursive functions such as Factorial

Y � �f � 	�x � f 	x x�� 	�x � f 	x x��

The crucial property of Y is that Y F �� F 	Y F � for any F � as can be seen by the following
calculation�

Y F � 	�f� 	�x� f 	x x�� 	�x� f 	x x��� F

�� 	�x� F 	x x�� 	�x� F 	x x��

�� F 		�x� F 	x x�� 	�x�F 	x x���
�� F 		�f� 	�x� f 	x x�� 	�x� f 	x x��� F �

� F 	Y F �

	Note that it is not quite the case that Y F ��� F 	Y F �� the last arrow goes in the wrong
direction
 There is a slightly more complicated variant that does have this property
�

Now� suppose we want to write a recursive function de�nition of the form F �
hbody containing F i� i
e
� we want to write a de�nition where the expression on the right�hand
side of the equals uses the very function that we are de�ning� as in the de�nition of Factorial

�

The intention is that the recursive de�nition should be �unrolled� at the point where it occurs�
for example� the de�nition of Factorial would intuitively be written

if n � � then �
else n � 	if n� � � � then �

else n � 	if n � � � � then �
else 	n� �� � � � ���

This e�ect can be achieved by de�ning G � �f� hbody containing fi and F � Y G� since then

F � Y G
�� G 	Y G�
�� hbody containing 	Y G�i
�� hbody containing hbody containing 	Y G�ii

etc�

For example� if we de�ne the factorial function by

Fact � �fact � �n� If 	IsZero n� C� 	Times n 	fact 	Pred n���
Factorial � Y Fact�

then applying Factorial to the Church numeral for � leads to the following calculation�

Factorial C� � Y Fact C�

�� Fact 	Y Fact� C�

�� 	�fact� �n� If 	IsZero n� C� 	Times n 	fact 	Pred n���� 	Y Fact� C�

�� 	�n� If 	IsZero n� C� 	Times n 	Y Fact 	Pred n���� C�

�� If 	IsZero C�� C� 	Times C� 	Y Fact 	Pred C����
�� If False C� 	Times C� 	Y Fact C���
�� Times C� 	Y Fact C��
� Times C� 	Factorial C��

That is� Factorial	�� � � � Factorial	��
 This calculation justi�es our informal assertion that
Factorial really implements the factorial function� it can easily be proved that Factorial	Cn� ��

C�n for each nonnegative number n� where #n is the �real� factorial of n

Here are some other well�known combinators�

I � �x� x
K � �x� �y� x

S � �x� �y� �z� 	x z� 	y z�

I is called the �identity combinator� because I M �� M for any M
 K is a combinator that
takes two arguments� throws away the second� and returns the �rst
 	We called the same
expression True before� but we are not thinking of it here as representing a boolean value
�
S �distributes� its third argument to both its �rst and its second arguments
 An interesting
property of these three is that� between them� they contain all the power of lambda�abstraction�
in the sense that for any combinator M � there is a combinator N such that N �� M and N

can be written using just S� K� I � and application� with no variables or abstractions except
those occuring in the de�nitions of S� K� and I
 For example� False �� K I

�

��	 Properties of Reduction

The importance of lambda�calculus in computer science comes from the fact that it is simulta�
neously powerful enough to form a realistic core for many programming languages and simple
enough that its properties can be studied mathematically
 Indeed� the study of the lambda�
calculus now constitutes a branch of mathematics in its own right
 We review a few classical
results

A lambda�expression containing more than one redex can be reduced in more than one way�
leading� in general� to di�erent results
 For example� K I 	K True False� reduces in one step
to either I or K I True
 Here� we can further reduce the second result� yielding I again� but
we might worry that there could be some M such that M could be reduced to either N� or
N� in such a way that N� and N� could never be �brought back together� by reducing them
further
 This situation would render the notation N� �� N� nonsensical� since it would be hard
to argue that N� and N� are equal in any behavioral sense
 Fortunately� the following theorem�
sometimes called the fundamental syntactic property of the lambda�calculus� guarantees that
this cannot actually happen � i
e
� that reduction in the lambda�calculus is con�uent

Theorem �Church�Rosser�� If M reduces to two di�erent expressions� N� and N�� then
these further reduce to some common expression L
 	In symbols� ifM ��� N� andM ��� N��
then there is some L such that N� ��

� L and N� ��� L
�

Corollary� If two terms are beta�convertible� then they both reduce to some common term �
i
e
� if M �� N then there is some L such that that M ��� L and N ��� L

The latter form of the Church�Rosser property immediately implies the uniqueness of

normal forms� if N� �� N� and neither N� nor N� contain any redexes� then N� and N�

must be identical 	modulo names of bound variables�
 This justi�es regarding the normal form
of a term 	when it has one� as its �meaning� or �value
� For example� we can say that the
value of the expression Plus C� C� is C�

We have seen that there are some terms� like "� that do not have normal forms
 There are
also some� like K I "� that do have a normal form 	I�� but that can also be reduced inde�nitely�
K I " �� K I " �� K I " �� etc�
 We call terms like " non�normalizable� terms like K I "
normalizable� and terms like Plus C� 	Plus C� C� �� for which every sequence of reductions
ends in a normal form� strongly normalizing

A reduction strategy is a rule specifying which redexes should be reduced �rst
 There
are several common reduction strategies 	a classic comparison is �Plotkin� �����
 The normal�

order reduction strategy� sometimes called call�by�name reduction� always reduces the redex
whose � appears the furthest to the left
 The lazy strategy also reduces the leftmost redex� but
only if that redex is not itself in the body of some abstraction � that is� lazy reduction stops
when the expression reaches aweak head normal formwith no �top�level� redexes
 Similarly�
applicative�order 	or call�by�value� reduction always chooses the leftmost redex 	�x�M�N
where N is in a particular �evaluated form�� either a variable� or a lambda�abstraction� or
a variable applied to some expression in evaluated form 	in particular� not a redex�
 These
strategies lead to di�erent choices of which redex to reduce �rst in the following expression�

�v� 	�z� z� 		�w�w� 	x 	�y� y��� normal order

�v� 	�z� z� 		�w�w� 	x 	�y� y��� applicative order

�v� 	�z� z� 		�w�w� 	x 	�y� y��� lazy 	no reductions allowed�

�

Applicative�order reduction exactly matches the ordering of function calls in call�by�value pro�
gramming languages such as Scheme and ML� while lazy reduction approximates the ordering
in languages such as Haskell and Algol��� �cf
 Goldberg�s article in this handbook
 Normal�
order and lazy reduction are �safer� strategies than applicative�order� since they never fail to
terminate except on non�normalizable expressions
 For example� the expression K I " leads to
the normal form I under normal�order reduction� while applicative�order leads to an in�nite
sequence of reductions of "

Theorem �Normalization�� A sequence of normal�order reductions beginning from a nor�
malizable term M always terminates in a normal form after a �nite number of steps
 Similarly�
lazy reduction always �nds a weak head normal form for any term that has one

��
 Operational and Denotational Equivalences

When should we say that two lambda�expressions �behave the same�$ Two essentially di�erent
sorts of answer can be given

On one hand� we can take an operational view� concentrating on how expressions behave
under reduction
 We have already seen one notion of equivalence that arises in this way� where
two expressions are judged equivalent if they are beta�convertible
 But we might reasonably
wish to extend this notion a little� since there are pairs of expressions like 	�x� x x�	�x� xx�
and 	�x� x x x�	�x� x x� that are not beta�convertible� but that nevertheless have arguably the
same external behavior 	i
e
� none at all� just an in�nite sequence of internal steps�
 On the
other hand� simply saying �two terms are equivalent if they are convertible or if neither has a
normal form� goes too far in the other direction� since there are some terms without normal
forms that do �behave di�erently
� For example� the expressions �x� xTrue" and �x� xFalse"
are both non�normalizable� but applying the �rst to K yields an expression with normal form
True� while applying the second to K yields an expression with normal form False
 In other
words� �x� xTrue" and �x� xFalse" have the same behavior in isolation 	both diverge�� but
they do not have the same behavior in all contexts

The idea that equivalent expressions should have the same behavior in all contexts can
be formalized using the following notion of contextual equivalence� �rst studied by Morris

First� we introduce the notion of a context� a lambda�expression with a �hole�� written � �
into which another expression can be placed
 For example� suppose C� is the context �x� � x

Filling the hole in C� with the expression x y� written C�x y� yields �x� x y x
 	Notice how�
unlike substitution� the variable x in the expression x y is �captured� by the binder �x
� Two
expressions M and N are said to be equivalent when� for any context C� � the expression C�M
is normalizable if and only if C�N is normalizable

Note that this de�nition is stated in terms of normalizability� and does not explicitly de�
mand that the normal forms of M and N be the same
 This notion of �observation� might
initially seem too weak
 For example� the context C� � � K fails to distinguish the expressions
�x� xTrue" and �x� xFalse"� since C��x� xTrue" �� True and C��x� xFalse" �� False

both reduce to normal forms
 The discriminating power of contextual equivalence comes
from the quanti�cation over all contexts
 Here� the more complex context C� � � K" I

does distinguish the two processes in question� since C��x� xTrue" ��� K True "" I ���

True " I ��� " has no normal form� while C��x� xFalse" ��� K False "" I ���

False " I ��� I has the normal form I

An equivalent way of formulating the intuition behind contextual equivalence is via the

notion of applicative bisimulation
 The idea here is to give a method of testing whether

�

two expressions have observably di�erent behavior� and regard two expressions as equivalent
if they cannot be shown to be di�erent by making any �nite sequence of tests
 Formally� two
combinators M and N are said to be bisimilar only if 	�� either both are non�normalizable
or both are normalizable� and 	�� for each combinator L� the applications M L and N L are
bisimilar
 Two arbitrary expressions M and N � possibly with free variables� are bisimilar if�
no matter what combinators are substituted for their free variables� the resulting combinators
are bisimilar in the previous sense

The form of the de�nition of applicative bisimulation� which takes all expressions to be
bisimilar except those that fail one of the two conditions above� leads to a powerful �coin�
ductive� reasoning technique� to show that two expressions are bisimilar� it su!ces to show
that no contradiction results from the assumption that they are
 For example� to show that
" � 	�x� x x�	�x� xx� is bisimilar to "� � 	�x� x x x�	�x� xx�� we reason as follows� If they
are not bisimilar� then there must be some sequence of terms L�� L��

 � Lk such that
"L�L� � � � Lk is normalizable and "�L�L� � � � Lk is not� or vice versa
 But this cannot be�
since both " and "� can only reduce to non�normalizable terms� no matter what they are
applied to
 So " and "� are bisimilar

As this example illustrates� applicative bisimulation is typically much easier to use than
contextual equivalence
 In order to show directly that " and "� are contextually equivalent�
we would have to show that they have the same behavior when placed in an arbitrary context�
applicative bisimulation allows us to consider just contexts of the form �L�L� � � �

Many variants of the de�nitions of contextual equivalence and applicative bisimulation have
been studied
 For example� �normalizable� can be replaced by �reaches a normal form under
a normal�order reduction strategy�� or �

 under a lazy strategy�� etc

A somewhat di�erent� denotational perspective on expression equivalence is obtained by
returning to the original intuition that lambda�expressions were intended to represent func�
tions� and say that M and N are the same if they represent the same function � i
e
� if they
map the same inputs to the same outputs
 To make this precise� we need to choose some
semantic domain D 	i
e
� some set of functions� and de�ne a denotation function �� that
maps each expression M into an element ��M of D
 	See Schmidt�s article in this handbook
for more discussion of domains and denotation functions
� There are some serious technical
problems with de�ning D and �� � stemming from the fact that� since lambda�expressions take
lambda�expressions as arguments and return lambda�expressions as results� each element of D
is actually a function from D to D � that is� D must be a larger set than the set of func�
tions from D to D
 Trying to construct such a D naively leads to a mathematical paradox�
where we end up with a D that is strictly larger than itself
 Fortunately� Scott and Plotkin
realized in ���� that� by considering only some of the functions from D to D� the paradox can
be avoided
 Indeed� the same basic insight can be used to construct many di�erent Ds with
di�erent properties

��� Research Areas

The study of denotational semantic models of the lambda�calculus and related systems has led
to a rich research literature� surveyed in textbooks by BarendregtBarendregt� Gunter ������
Schmidt ������ and Winskel ����� and a shorter article by Gunter and Scott �Gunter and
Scott� ����
 One issue that has received considerable attention is the problem of �nding �fully
abstract� models� in which each lambda�expression is mapped to an element of the model 	a
mathematical function of some carefully chosen sort� in such a way that two lambda�expressions
have equivalent operational behavior if and only if they denote the same element of the model

��

Operational notions of program equivalence such as applicative bisimulation have begin to
recieve serious attention only relatively recently 	e
g
 �Gordon� �����

Implementation techniques for programming languages based on the lambda�calculus have
a long history� from Landin�s original �SECD machine� to more modern proposals such as
the G�machine �Peyton Jones and Lester� ����
 A related theoretical development is work
on �optimal� reduction strategies� which try to choose redexes so as to reach a normal form
as quickly as possible
 The lambda�calculus forms a common basis for work on optimization
techniques such as partial evaluation �Jones et al�� ����� related notations are being used as
intermediate languages in optimizing compilers for high�level languages such as C

In �impure� functional languages such as Scheme and ML� mutable variables are added
to the ��calculus� retaining the higher�order �avor of the pure calculus while giving up the
simple intuition that expressions represent mathematical functions 	cf
 Goldberg�s chapter
in this handbook�
 For imperative computation� where evaluation of an expression can also
have �side e�ects� on mutable variables� it is not yet clear how to reason about equivalence
of expressions� since there is no obvious choice for the de�nition of what is observable
 For
example� mutable variables may be local to a particular function� and side�e�ects on these are
not directly observable in the same way as side�e�ects on global variables� though they can be
observed indirectly by observing the input�output behavior of the function

One of the most active areas of lambda�calculus research is the study of typed lambda�
calculi� in which functions are classi�ed according to the types of arguments they can �correctly�
accept and the types of results they can return
 Such calculi typically have quite di�erent
properties from the untyped calculus presented here
 For example� it is typically the case that
every term is strongly normalizing 	combinators like " and Y cannot then be de�ned�
 Also�
semantic models of typed calculi are often more straightforward to construct
 See Cardelli�s
chapter in this handbook

� Pi�Calculus

The lambda�calculus holds an enviable position� it is recognized as embodying� in miniature�
all of the essential features of functional computation
 Moreover� other foundations for func�
tional computation� such as Turing machines� have exactly the same expressive power
 The
�inevitability� of the lambda�calculus arises from the fact that the only way to observe a func�
tional computation is to watch which output values it yields when presented with di�erent
input values

Unfortunately� the world of concurrent computation is not so orderly
 Di�erent notions of
what can be observed may be appropriate in di�erent circumstances� giving rise to di�erent
de�nitions of when two concurrent systems have �the same behavior�� for example� we may
wish to observe or ignore the degree of inherent parallelism of a system� the circumstances
under which it can deadlock� the distribution of its processes among physical processors� or
its resilience to various kinds of failures
 Moreover� concurrent systems can be described in
terms of many di�erent constructs for creating processes 	fork�wait� cobegin�coend� futures�
data parallelism� etc
�� exchanging information between them 	shared memory� rendezvous�
message�passing� data�ow� etc
�� and managing their use of shared resources 	semaphores�
monitors� transactions� etc
�

This variability has given rise to a large class of formal systems called process calculi

	sometimes process algebras�� each embodying the essence of a particular concurrent or
distributed programming paradigm
 We focus here on one typical process calculus� the pi�

��

Syntax�
P�Q�R ��� � inert process

x	y�� P input pre�x
%xy� P output pre�x
P j Q parallel composition
	�x�P restriction
#P replication

Renaming of bound variables�

x	y�� P � x	z��	�z�yP � if z �� FV 	P �
	�y�P � 	�z� 	�z�yP � if z �� FV 	P �

Structural Congruence�

P j Q � Q j P commutativity of parallel composition
	P j Q� j R � P j 	Q j R� associativity of parallel composition
		�x�P � j Q � 	�x� 	P j Q� if x �� FV 	Q� �scope extrusion�

#P � P j#P replication

Operational Semantics�

%xy�P j x	z��Q �� P j �y�zQ communication
P j R �� Q j R if P �� Q reduction under j
	�x�P �� 	�x�Q if P �� Q reduction under �

P �� Q if P � P � �� Q� � Q structural congruence

Figure �� Syntax and Operational Semantics of the Pi�Calculus

calculus 	or ��calculus� of Milner� Parrow� and Walker �Milner et al�� ����� Milner� ����

References to some other popular process calculi can be found at the end of the section

In the pure lambda�calculus� everything is a function� numbers� for example� are encoded
as special functions that can be interrogated 	by applying them� to �nd out which number
they represent
 Analogously� in the pi�calculus� every expression denotes a process � a free�
standing computational activity� running in parallel with other processes and possibly contain�
ing many independent subprocesses
 Two processes can interact by exchanging a message on
a channel
 Indeed� communication along channels is the sole means of computation� just as
function application is in the lambda�calculus
 The only thing that can be observed about a
process�s behavior is its ability to send and receive messages

	�� Syntax and Operational Semantics

The simplest pi�calculus expression is the �inert process� �� which denotes a process with no
behavior at all
 More interestingly� if P is some process expression� then the expression x	y�� P
denotes a process that waits to read a value y from the channel x and then� having received
it� behaves like P
 Similarly� %xy� P denotes a process that �rst waits to send the value y along
the channel x and then� after y has been accepted by some input process� behaves like P

P j Q denotes a process composed of two subprocesses� P and Q� running in parallel
 That
is� P j Q can exhibit all of the observable behaviors 	sequences of messages sent and received�

��

of both P and Q� interleaved in any order
 Moreover� if P can send a message on some channel
x and Q can receive on x� then P j Q can perform an internal communication in which the
message is exchanged between P and Q

Placing the restriction operator 	�x� before a process expression P ensures that x is a fresh
channel in P � i
e
� that messages sent and received by P on x will never be mixed with
messages sent or received on any other channel created elsewhere� even another channel that
happens to be named x
 That is� the alphabetic names of channels are unimportant� just as
the names of bound variables are unimportant in the lambda�calculus� the process 	�x� %yx� �
is completely equivalent to 	�z� %yz� � � both introduce a fresh channel� di�erent from all other
channels� and send it on y

Finally� the �replicated process� #P stands for an in�nite number of copies of P � all running
in parallel
 Typically� only a few copies will actually be doing anything at a given moment� #P
should really be thought of as a simple notational device for describing processes with in�nitely
long sequences of behaviors
 For example� #	t	w�� %xy� %tv� �� denotes a process that� after it is
�triggered� by someone sending it a message on t� sends a message on x and then triggers
another copy of itself by sending another message on t � i
e
� it responds to a message on t by
sending an in�nite stream of messages on x

When an input or output pre�x is followed by �� we normally drop the �� writing %xy
instead of %xy� �
 Also� to avoid writing too many parentheses� we give input and output
pre�xes the strongest precedence� replication the next strongest� parallel composition the next�
and restriction the weakest� so that 	�x� #x	y�� a	b� j %zw means 	�x� 		#	x	y�� a	b����� j %zw� ��

The de�nitions of free variables and substitution in the pi�calculus are similar to the cor�
responding de�nitions in the lambda�calculus
 The expressions x	y�� P and 	�x�P bind the
variable x in the body P
 As before� we silently rename bound variables whenever necessary

Substitution is simpler here� because we only substitute variables for variables � we do not
substitute processes into other processes

The operational semantics of pi�calculus expressions is de�ned as a reduction relation� as
in the lambda�calculus
 We say that P reduces to Q� written P �� Q� if P contains two
parallel subprocesses that can communicate on some channel x to become the corresponding
subprocesses of Q
 This is formalized by the group of rules at the bottom of Figure �
 The �rst
rule� corresponding to the beta�reduction rule in lambda�calculus� de�nes a primitive step of
communication� a redex consisting of an output process %xy� P in parallel with an input process
x	z�� Q reduces to P in parallel with Q� where the data value y is substituted for the bound
variable z in Q
 For example� %xy� %yz j x	w�� w	v� reduces to %yz j y	v�� which further reduces to
� j �� which cannot reduce further
 This example underscores the fact that the �data value�
that is passed from sender to receiver during a communication is itself a channel� and may later
be used by the receiver for communication

The next two rules specify that� if a communication can occur between two subprocess
of a process P � then the same communication can still occur when P is placed in parallel
with another process Q and� similarly� if a communication can occur within P � then the same
communication can occur within 	�x�P
 Note that we do not allow reductions to occur inside
the body of a process that is pre�xed by an input or output

The �nal rule in Figure � allows the two �halves� of a redex to be mixed together with other
parallel components of a larger system
 For example� in the expression x	y�� P j %xy�Q j %xz� R�
there are two possible communications on x 	between the �rst and second components and
between the �rst and third�� but neither has exactly the form of the left�hand side of the
communication rule� the second redex has an extra subprocess �in the middle�� and both

��

redexes are in the wrong order� with the input subprocess �rst
 The structural congruence
relation � formalizes the intuition that this doesn�t matter � that x	y�� P j %xy�Q j %xz� R is
just a another way of writing %xy�Q j x	y�� P j %xz� R or %xz� R j x	y�� P j %xy�Q� both of which
literally contain redexes
 The four rules de�ning � may be applied any number of times within
a process expression
 The structural congruence rule for reduction has the e�ect that P can
reduce to Q whenever P can be rearranged so that it literally contains a redex by which it
can reduce to Q
 In addition to rearranging the order of parallel compositions � the task
of the �rst two of the structural congruence rules � there are rules for rearranging � and
#
 The �rst says that the scope of a � binding may be enlarged to enable reduction� as in
		�z� %xz� P � j x	y�� Q � 	�z� %xz� P j x	y�� Q �� 	�z� 	P j �z�yQ�
 The second formalizes the
intuition that #P behaves just the same as an arbitrary number of parallel copies of P � we can
move new copies of P out from under the # at will� making them available to participate in
communications

Because of the structural congruence rule� each process expression beginning with an input
or an output may� in general� be part of several redexes at once
 For example� the expression
	�x� %xy j %xz j x	w�� %wv contains the redexes 	�x� %xy j %xz j x	w�� %wv and 	�x� %xy j %xz j x	w�� %wv�
both of which include x	w�� %wv
 Reducing either one of these has the e�ect of destroying
the other
 Moreover� the resulting processes are irretrievably di�erent� one reduction yields
	�x� %xz j %yv� whose only further behavior is sending a message on y� while the other yields
	�x� %xy j %zv� which can only send a message on z
 This non�con�uence of reduction in
the pi�calculus is crucial� since it models the fact that real concurrent programs may often
yield di�erent results depending on the order in which various internal events occur
 Such
timing dependencies may be undesirable 	they are often called �race conditions��� but we need
a framework in which they can occur in order for the assertion that they do not occur in a
particular process to have any force# A related point is that we are not interested in a conversion
relation on processes� as we were in the lambda�calculus� the fact that P and Q can both reduce
to R is not su!cient reason to claim that P and Q behave the same� since P and Q may also
be able to reduce to other� completely dissimilar� processes

	�� Examples

As with the lambda�calculus� the simplicity of the pi�calculus is deceptive� the primitive mecha�
nisms of restriction� communication� parallel composition� and replication can be used to model
a great variety of programming structures

One very easy encoding trick allows several values to be sent and received in each message
on a channel
 Write %xhy�� � � � � yni for the simultaneous output of the tuple y� through yn on
x� and x	z�� � � � � zn� for the corresponding input process� which accepts a tuple of values and
binds them to the variables z� to zn
 The case where n � � corresponds to sending a data�less
signal on x
 These polyadic communication pre�xes can be encoded in the basic pi�calculus
as follows�

%xhy�� � � � � yni� P � 	�p� %xp� %py�� � � � %pyn� P choosing p �� FV 	P �
x	z�� � � � � zn�� Q � x	p�� p	z��� � � �p	zn�� Q choosing p �� FV 	Q�

That is� to send y� through yn on x� we make up a private channel p� send p on x� and then
send y� through yn� one after the other� on p
 Conversely� to read a tuple from x� we read p

from x and then read the values from p
 By using use a fresh p each time we send a tuple on
x� we avoid any possible confusion between di�erent processes sending tuples on x at the same
time

��

The encodings of common data structures in the lambda�calculus all have their counterparts
in the pi�calculus
 For example� the boolean values True and False are encoded by processes
that repeatedly accept 	over some channel b� a pair of channels t and f and respond by sending
a message on either t or f �

True	b� � #b	t� f��%thi
False	b� � #b	t� f�� %fhi

If Test	b� is de�ned as 	�t� 	�f�%bht� fi� 	t	�� P j f	�� Q�� then the composite process
True	b� j Test	b� reduces to True	b� j P j 	�t� 	�f � 	� j f 	��Q�� while False	b� j Test	b� reduces
to False	b� j Q j 	�t� 	�f � 	� j t	��P�� where the third subprocess in each case is unable to par�
ticipate in any further actions
 	For notational convenience� some variants of the pi�calculus
include extra structural congruence rules like P j � � P to �garbage�collect� such deadlocked
subprocesses
� The channel b can be thought of as the location of the value True	b�� since b
is the only means by which other processes can refer to it or interact with it� or as a reference
to 	the process encoding� the value True

The pi�calculus is a quintessentially imperative 	i
e
 non�functional� language� in the sense
that we do not expect to get the same result each time if we query a process repeatedly over a
channel
 A typical example is a �reference cell object�� which maintains a single piece of state�
updating it in response to messages sent over a channel w and reporting its current value in
response to messages sent over a channel r

Ref 	r� w� i� � 	�l� %lhii j ReadServer	l� r� jWriteServer	l� w�
ReadServer	l� r� � #r	c�� l	v�� 	%chvi j %lhvi�
WriteServer	l� w� � #w	c� v��� l	v�� 	%chi j %lhv�i�

The process Ref 	r �w � i� comprises three parts� a process waiting to send the initial value i

on an internal channel l� which is private to the reference cell� a �read server� that accepts
messages on the channel r and� in response to each� sends back the current value on a result
channel c that is included in the message� and a �write server� that accepts messages containing
new values for the reference cell and acknowledges their acceptance on a completion channel
c that is included in the message
 Each time a read or write request is received� a process is
created that reads the current value of the reference cell from the internal channel l� responds
to the request by sending something back on the result or completion channel c� and then
restores either the existing value or the speci�ed new value of the cell by sending it on l
 At
any given moment� there will be just one process ready to send on l� this invariant ensures
that� for example� the client process

	�c� %whv � ci� c	�� 	�d�%rhdi� d	e�� Q

will always receive v on d in response to its request message on r� assuming that no other client
processes are simultaneously interacting with the same reference cell 	note that it waits for the
write�completion signal to arrive on c before sending the read request�

As a �nal illustration of the power of the pi�calculus� here is an encoding of the lambda�
calculus itself� with a normal�order reduction strategy
 Given a lambda�expression M and a
channel p� de�ne the process expression ��M 	p� as follows�

���x�M 	p� � p	x� q�� ��M 	q�
��x	p� � %xhpi
��MN 	p� � 	�q� ��M 	q� j 		�y� %qhy� pi j#y	r�� ��N 	r��

��

��M 	p�� pronounced �the process representing M with argument port p�� is an expression that
rests dormant until it receives on p a �trigger� x for its argument and a new argument port q

It then evolves to a new process with argument port q
 For example� the lambda�expression
	�x� x�z is translated as follows�

��	�x� x�z	p� � 	�q� ���x� x	q� j 		�y� %qhy� pi j#y	r�� ��z	r��
� 	�q� 	q	x� q��� %xhq�i� j 		�y� %qhy� pi j#y	r�� %zhri�

�� 	�q� 	�y� %yhpi j#y	r�� %zhri

�� 	�q� 	�y� 	#y	r�� %zhri� j %zhpi
��� %zhpi
� ��z	p�

	�	 Operational Equivalence

The ��� in the penultimate line above deserves some discussion
 Informally� it is clear that
the process 	�q� 	�y� 	#y	r�� %zhri� j %zhpi can only communicate on z� since the replicated input
on y appears immediately underneath the binder 	�y� � which guarantees that there can never
be any sender on y
 How do we express rigorously such assertions that one process expression
has the same behavior as another$

As with the lambda�calculus� there are two basic approaches� either we can try to identify
some class of �real processes� and say that two process expressions are equivalent if they denote
the same real process� or we can focus on the reduction relation of the process calculus itself
and say that two process expressions are equivalent if they have the same reduction behavior in
all contexts
 Work is proceeding on both fronts� but the situation is much more complex than
in the simple world of functional computation 	cf
 �Milner� ����� Baeten and Weijland� �����
Hennessey� ����� Hoare� ���� for discussion and references�
 For denotational approaches� the
problem is �nding a pragmatically satisfying de�nition of �real processes
� For operational
approaches� the 	related� problem is that there are many possible de�nitions of �behavior��
yielding numerous� subtly di�erent� equivalences �van Glabbeek� ����
 So far� operational
techniques have proved most successful� but both remain active research areas

As in lambda�calculus� the most intuitive way of de�ning operational equivalence is via
some notion of contextual equivalence
 A process context is a process expression with a
hole into which another process can be placed
 We say that P and Q are equivalent when C�P
and C�Q have the same �observable behavior� for each process context C�

In the lambda�calculus� we saw that there were several variations on the de�nition of con�
textual equivalence� depending on precisely what observations we allow of a lambda term
M in some testing context C�
 For example� we might choose to observe whether C�M is
normalizable� whether it is normalizable using a normal�order reduction strategy� whether it
is strongly normalizing� etc
 � each choice giving rise to a di�erent notion of equivalence of
lambda�terms
 In the pi�calculus� there are even more choices
 If C� is a testing context for a
process P � we might choose to observe� for example�

�
 whether C�P can eventually perform an input or output action�

�
 what sequences of input and output actions C�P can perform�

�
 how early or late C�P becomes committed to producing certain sequences of inputs and
outputs 	so that� for example� we distinguish the case where C�P can send on a and then
chooses whether to send on b or on c from the case where C�P chooses �rst whether to
send on a and then b or on a and then c��

��

�
 the circumstances under which C�P can become deadlocked

Note that �does C�P have a normal form$� is not a useful kind of observation in the pi�calculus�
since it leads us to regard all processes with in�nite behaviors as behaviorally identical
 In the
lambda�calculus� this identi�cation makes sense� since any lambda�expression whose reduction
does not terminate can be viewed as an in�nite loop
 But in the pi�calculus� a process may
go on computing forever but still interact usefully with its environment
 Real parallel and
distributed systems are full of server processes with this property

As in the lambda�calculus� contextual equivalence between two processes can be di!cult to
establish� because it demands that they must yield the same observable behavior when placed in
an arbitrary testing context C�
 Fortunately� some useful variants of contextual equivalence can
reformulated in terms of direct conditions on the processes themselves� with no quanti�cation
over contexts
 For example� the following de�nition coincides with an observational congruence
where the allowed observations are those listed second and third above

We say that two process expressions P and Q are bisimilar if every action of one can be
matched by a corresponding action of the other to reach a bisimilar state
 More precisely� 	��
if P can output the value a on the channel x and become P �� the Q must also be able to output
a on x and reach Q� such that P � is bisimilar to Q�� 	�� if P can input a value a from the
channel x and become P �� the Q must also be able to input a from x and reach Q� such that
P � is bisimilar to Q�� 	�� if P can perform some internal communication to become P �� then
Q must be able to perform an internal communication to reach a state Q� such that P � and
Q� are bisimilar� and three similar clauses where the roles of P and Q are reversed
 We are
being informal here about what it means that a process can input or output a on x and become
another process� this can be formulated precisely using labelled transition systems

Like applicative bisimulation for lambda�terms� the de�nition of bisimulation for process
expressions is given in a coinductive style� two processes are bisimilar if we cannot show that
they are not � or� equivalently� if assuming that they are leads to no contradictions
 This
style of de�nition gives rise to a powerful technique for proving the bisimilarity of processes�
reminiscent of familiar inductive proof techniques used to prove properties of recursive functions
in functional programming languages
 We illustrate this technique with a simple example

Suppose we want to show that the process 	�q� 	�y� 	#y	r��R� j S is bisimilar to S� as long
as R and S do not have q and y among their free variables
 Begin by assuming that this is
true
 To check that there are no contradictions� we choose an arbitrary R and S and check that
the three conditions in the de�nition of bisimulation are satis�ed 	in both directions�
 For the
�rst condition� suppose 	�q� 	�y� 	#y	r��R� j S can make an output a on some channel x and
become P �
 Since the subexpression #y	r�� R begins with an input� it is clear that an output
on x must come from S� so P � � 	�q� 	�y� 	#y	r��R� j S� for some S�� and that S in isolation
can make the same output and become S�
 Since 	�q� 	�y� 	#y	r��R� j S� and S� are bisimilar
	by our original assumption�� we have failed to �nd a contradiction
 Conversely� suppose S

can make an output a on some channel x to become S�
 Then 	�q� 	�y� 	#y	r�� R� j S can make
the same output and become 	�q� 	�y� 	#y	r��R� j S�� where 	�q� 	�y� 	#y	r��R� j S� and S� are
again bisimilar by assumption
 The other two conditions in the de�nition of bisimilarity are
checked analogously
 We have therefore shown the absence of contradictions for an arbitrary
R and S� and our original assumption is justi�ed
 This example allows us to give a precise
meaning to the ��� at the end of the previous section� taking R to be %zhri and S to be %zhpi�
we have shown that 	�q� 	�y� 		#y	r�� %zhri� j %zhpi� is bisimilar to %zhpi

Many variants of bisimulation have been proposed
 One of the most common is so�called
weak bisimulation� which relaxes the demand that the processes simulate each other�s be�

��

havior �in lock step� and instead regards arbitrarily many steps of internal communication as
equivalent to a single step
 This equivalence is strictly coarser than the one de�ned above
	called strong bisimulation when it is necessary to distinguish the two�� in the sense that
whenever P and Q are strongly bisimilar� they are also weakly bisimilar
 In practice� weak
bisimulation is often more useful� since we typically want to regard two processes as having the
same observable behavior even if one consumes more processor cycles than the other

	�
 Research Areas

The pi�calculus is just one of a large family of process calculi� di�ering in many details but
sharing the basic orientation � focusing on interaction via communcation rather than shared
variables� on describing concurrent systems using a small set of primitive operators� and on
deriving useful algebraic laws for manipulating expressions written using these operators
 The
�rst historically� and among the most thoroughly studied� are Milner�s Calculus of Commu�

nicating Systems� CCS �Milner� ����� Milner� ����� and Hoare�s Communicating Sequential

Processes� CSP �Hoare� ����
 CCS is the direct predecessor of the pi�calculus� it can be de�
scribed informally as the �static� fragment of the pi�calculus where the messages exchanged
during communication do not contain any data 	i
e
 every output is of the form %xhi� P �
 CSP
embodies similar ideas in the form of both a theory and a programming language 	Occam�

Other members of the family include the variant of CCS described in Hennessy�s Algebraic

Theory of Processes �Hennessey� ����� and Bergstra� Klop� and Baeten�s systems� collectively
called ACP �Baeten and Weijland� ����
 The rapidly growing number of process calculi has
led to interest in taxonomic frameworks such as Generalized Structured Operational Seman�
tics �Groote and Vaandrager� ���� and action structures �Milner� ����� in which many di�erent
process calculi can be embedded and their properties compared

Process calculi are widely used for speci�cation and veri�cation of concurrent systems�
especially of communication protocols� both manually and with support from tools such as the
Edinburgh Concurrency Workbench �Cleaveland et al�� ����

Numerous programming languages have combined the concurrency primitives of process
calculi with more conventional features for sequential programming� well�known examples in�
clude Amber� Concurrent ML� and Facile
 The �bare� pi�calculus is used the basis of the
Pict language
 Pi�calculus has also proved useful in the study of concurrent object�oriented
languages

� De�ning Terms

Lambda�calculus A core language of functional computation� de�ned in Figure �� in which
�everything is a function� and all computation proceeds by function application

Pi�calculus A core calculus of message�based concurrency� de�ned in Figure �� in which �ev�
erything is a process� and all computation proceeds by communication on channels

Redex A subexpression in a form that is ready to be evaluated by a step of reduction

Normal form An lambda�expression containing no redexes

Weak head normal form A lambda�expression in which all redexes are inside the bodies of
lambda�abstractions

��

Con�uence The property of the lambda�calculus that states that the order in which redexes
are chosen for reduction does not a�ect the �nal normal form that is reached

Combinator A lambda�expression with no free variables

Strongly normalizing A lambda�expression for which every sequence of reductions termi�
nates in a normal form

Normal�order �call�by�name	 reduction A reduction strategy in which the leftmost redex
is always reduced �rst

Applicative�order �call�by�value	 reduction A reduction strategy in which the argument
must be reduced to �evaluated form� before a function application can be reduced

Contextual equivalence Formalizes the intuition that two expressions can be considered
�the same� if they have the same behavior in all contexts

Bisimulation An alternative to contextual equivalence� replacing the quanti�cation over all
contexts with the more tractable requirement that equivalent expressions should be able
to match each others� behavior step�by�step

Coinduction A proof technique associated with bisimulation
 To prove that two expressions
are equivalent� we assume that they are equivalent and show that no contradiction results

References

�Baeten and Weijland� ����� J� C� M� Baeten and W� P� Weijland� Process Algebra� Cambridge Tracts
in Theoretical Computer Science ��� Cambridge University Press� �����

�Barendregt� ���	� H� P� Barendregt� The Lambda Calculus� North Holland� revised edition� ���	�

�Barendregt� ����� H� P� Barendregt� Functional programming and lambda calculus� In van Leeuwen
������� chapter
� pages �����	�

�Cleaveland et al�� ����� Rance Cleaveland� Joachim Parrow� and Bernhard Ste�en� The Concurrency
Workbench� A semantics�based tool for the veri�cation of concurrent systems� ACM Transactions on
Programming Languages and Systems� ��������
�� January �����

�Davis� ����� Martin Davis� Computability and Unsolvability� Dover� ����� Previous edition �����

�Gordon� ���	� Andrew D� Gordon� Functional Programming and Input�Output� Cambridge University
Press� ���	�

�Groote and Vaandrager� ����� J�F� Groote and F�W� Vaandrager� Structured operational semantics
and bisimulation as a congruence� Information and Computation� ����������� �����

�Gunter and Scott� ����� C� A� Gunter and D� S� Scott� Semantic domains� In van Leeuwen �������
chapter ��� pages ����
	�

�Gunter� ����� C� A� Gunter� Semantics of Programming Languages� Structures and Techniques� The
MIT Press� Cambridge� MA� �����

�Hennessey� ����� Matthew Hennessey� Algebraic Theory of Processes� MIT Press� �����

�Hindley and Seldin� ����� J� Roger Hindley and Jonathan P� Seldin� Introduction to Combinators and
��Calculus� volume � of London Mathematical Society Student Texts� Cambridge University Press�
�����

��

�Hoare� ����� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall� �����

�Jones et al�� ����� Niel D� Jones� Carsten K� Gomard� and Peter Sestoft� Partial Evaluation and Au�
tomatic Program Generation� Prentice�Hall International� �����

�Milner et al�� ����� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes �Parts I and
II�� Information and Computation� �����

� �����

�Milner� ����� Robin Milner� A Calculus of Communicating Systems� volume �� of Lecture Notes in
Computer Science� Springer Verlag� �����

�Milner� ����� Robin Milner� Communication and Concurrency� Prentice Hall� �����

�Milner� ����� R� Milner� Operational and algebraic semantics of concurrent processes� In van Leeuwen
������� chapter ��� pages ������	��

�Milner� ����� Robin Milner� The polyadic ��calculus� a tutorial� Technical Report ECSLFCS��
���� Laboratory for Foundations of Computer Science� Department of Computer Science� University of
Edinburgh� UK� October ����� Proceedings of the International Summer School on Logic and Algebra
of Speci�cation� Marktoberdorf� August ����� Reprinted in Logic and Algebra of Speci�cation� ed� F�
L� Bauer� W� Brauer� and H� Schwichtenberg� Springer�Verlag� �����

�Milner� ����� Robin Milner� Calculi for interaction� Acta Informatica� ����� To appear�

�Peyton Jones and Lester� ����� Simon L� Peyton Jones and David R� Lester� Implementing Functional
Languages� Prentice Hall� �����

�Plotkin� ��
�� Gordon Plotkin� Call�by�name� call�by�value� and the ��calculus� Theoretical Computer
Science� ��������� ��
��

�Schmidt� ����� David A� Schmidt� Denotational Semantics� A Methodology for Language Development�
Allyn and Bacon� �����

�Tennent� ����� R� D� Tennent� Principles of Programming Languages� Prentice�Hall� �����

�van Glabbeek� ����� R� J� van Glabbeek� The linear time branching time spectrum II �the semantics
of sequential systems with silent moves�� In Proceedings of CONCUR ��	� pages ����� �����

�van Leeuwen� ����� Jan van Leeuwen� editor� Handbook of Theoretical Computer Science
 Volume B�
Elsevier � MIT Press� �����

�Winskel� ����� Glynn Winskel� The Formal Semantics of Programming Languages� An Introduction�
MIT Press� �����

� Further Information

The standard text for the lambda�caclulus is Barendregt ����	�� Hindley and Seldin ������ is less
comprehensive� but somewhat more accessible� Barendregt�s article in the Handbook of Theoretical
Computer Science ������ is a compact survey� Material on lambda�calculus can also be found in many
textbooks on functional programming languages �e�g� �Peyton Jones and Lester� ������ and programming
language semantics �e�g��Schmidt� ����� Gunter� ����� Winskel� �������

The best introduction to the pi�calculus itself is Milner�s tutorial ������� A deeper and more acces�
sible introduction to many of the same issues can be found in his book on CCS �Milner� ������ Books
by Baeten and Weijland ������� Hoare ������� and Hennessy ������ address other process calculi� Some
semantic issues are summarized in �Milner� ������

New work on lambda�calculus and process calculi appears in many journals covering theoretical
aspects of computer science� including Information and Computation� Theoretical Computer Science�
Mathematical Structures in Computer Science� Journal of Functional Programming� and Transactions
on Programming Languages and Systems� as well as journals in mathematics and logic� Relevant confer�
ences include Principles of Programming Languages �POPL�� Functional Programming and Computer
Architecture �FPCA�� Lisp and Functional Programming �LFP�� Logic in Computer Science� Theoretical

��

Aspects of Computer Science �TACS�� the International Conference on the Theory and Practice of Soft�
ware Development �TAPSOFT�� and the International Conference on Concurrency Theory �CONCUR��

��

