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Programming-Language Techniques for Concurrency

This is the fourth in a block of lectures looking at programming-language techniques for
concurrent programs and concurrent architectures.

Introduction, basic Java concurrency

Concurrency abstractions

Some other programming-language approaches to concurrency

Cautionary tales in concurrency
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1. Homework: Read this

Channel-based message-passing concurrency
The Go language provides concurrent goroutines and named channels for communication
between them. Read these two articles about this.

An Introduction to Programming in Go: Concurrency
https://www.golang-book.com/books/intro/10
Visualizing Concurrency in Go
https://divan.github.io/posts/go_concurrency_visualize

Optional Extras
Watch https://blog.golang.org/concurrency-is-not-parallelism

and https://is.gd/goconcurrencypatterns
Read A Tour of Go: Goroutines https://tour.golang.org/concurrency
and Go by Example: Goroutines https://gobyexample.com/goroutines
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2. Homework: Do this

Who uses Erlang? What do they do with it?

Read up about Erlang, its use of actors, supervision, and live code replacement.

Find an example of some software / a system / a service / a company that uses the
language and where someone has written about that.

Post the example to the mailing list or Piazza.

I shall collate examples on the blog and next Tuesday’s lecture. For example:

Demonware: Erlang and First-Person Shooters
10s of millions of Call of Duty Black Ops fans loadtest Erlang

Presentation to Erlang Factory, London 2011 http://is.gd/erlangfps
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Other examples

Erlang and Whatsapp

Ainsley O’Connell. Inside Erlang, The Rare Programming Language
Behind WhatsApp’s Success.
Article on Fast Company Labs blog, February 2014.

Elixir
Functional language that compiles to the Erlang VM, with a similar
concurrency model and distributed fault-tolerance. Used by several
companies, notably Pinterest.
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What difference does it make?

The homework covered two alternative models for communication-centric concurrent
programming.

Actor-based Erlang, Scala/Akka, . . .

Channel-based Go, Rust, Concurrent ML, . . .

What differences does it make to use one rather than the other?
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Concurrency in Java and C#

Java
. . . has language facilities for spawning a new java.lang.Thread, with synchronized code blocks
using per-object locks to protect shared data, and signalling between threads with wait and
notify.

C#
. . . has language facilities for spawning a new System.Threading.Thread, to lock code blocks
using per-object locks to protect shared data, and signalling between threads with Wait and
Pulse methods.
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Locks within locks
One synchronized method may call another in the same class, which is fine because it already
has the lock it needs. This requires reentrant locks.

Multiple locking

public class C {

public synchronized void actionA(int n) {
actionB(n); actionC(n);

}

private synchronized void actionB(int n) { ... }
private synchronized void actionC(int n) { ... }

}
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Locks within locks
When to release a reentrant lock cannot be determined statically; there must be a runtime count
of how many times it is acquired and released.

Recursive locking

public class C {

public synchronized void actionA(int n) {
if (n>0) { actionB(n); actionC(n); actionA(n-1); }

}

private synchronized void actionB(int n) { ... }
private synchronized void actionC(int n) { ... }

}
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Locks within locks
Sometimes an action will need to acquire exclusive use of two separate resources. This requires
nested synchronized blocks.

Two locks

// Method to swap elements between two arrays
public void exchange(int[] p, int i, int[] q, int j) {

synchronized(p){ // Claim first array p[]
synchronized(q){ // Claim second array q[]

int v = p[i]; p[i ] = q[j]; q[j ] = v; // Exchange elements
}

}
}
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Locks within locks
This thread-safe, but cannot ensure liveness. If two concurrent instances of exchange try to
obtain the same locks in the opposite order, they deadlock.

Two locks blocked

// Method to swap elements between two arrays
public void exchange(int[] p, int i, int[] q, int j) {

synchronized(p){ // Claim first array p[]
synchronized(q){ // Claim second array q[]

int v = p[i]; p[i ] = q[j]; q[j ] = v; // Exchange elements
}

}
}

exchange(a,1,b,4); | exchange(b,5,a,2);
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Networks of Locks

The problem arises in any situation where a routine needs exclusive access to multiple resources
before it can proceed. Several instances of the routine can run concurrently without problem:
but at any time two may deadlock because each holds a lock needed by the other.

This is known as the Dining Philosophers’ Problem.

There are various solutions, including:

Find some global ordering on the all resources, and then acquire the required resources
according to that order.
Add a centralized guard lock that must be held before attempting to reserve any resources.

These work, but they don’t come for free: at the least, they have to be properly chosen and
correctly implemented for the situation at hand.
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Locks for Small Changes in Large Structure: First Attempt

Suppose we want to modify a single node in a shared linked list. We might lock the whole thing:

...

find the node we want,

change it, and release the lock.

However, during the procedure this lock claims the entire list, blocking access by other threads
to any part of the list.
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Locks for Small Changes in Large Structure: Second Try

Instead of locking the entire list, we could lock the nodes individually as we pass them:

...

change the node, and unlock them on the way out.

Unfortunately, that still blocks the whole list from access by any other thread throughout the
procedure.
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Locks for Small Changes in Large Structure: Non-Nesting

To let others use the list, while avoiding any interference, we can instead lock nodes two at a
time:

...

change the node, and release the lock.

This is hand-over-hand or chain locking.
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Non-Nesting Locks

Hand-over-hand locking is a useful concurrency idiom:

3 It allows multiple threads to modify a list concurrently, without overtaking or interfering.

3 It works for trees and more complex datastructures.

7 It requires locks whose acquire/release is not nested.

7 In particular, the built-in locks of Java/C# are not enough...

7 ... so we need to use the extended concurrency libraries.

As ever, this works, but it doesn’t come for free: it has to be properly specified and correctly
implemented for the situation at hand.
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Thread Priorities

Where multiple threads are competing for time-slices, it becomes important to control the
behaviour of the scheduler that decides which runs when.

One way to do this is to assign each thread a priority, and use that to inform scheduler
decisions. Typically, higher priority threads may pre-empt lower priority threads, but not vice
versa; and if both are waiting to run, the higher priority thread will go first.

Java and C# both attach scheduler priorities to threads, as do almost all concurrent systems.
Exactly how the priority affects scheduling decisions will differ from one system to another.
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Getting Priorities Wrong

Consider the following concurrent system:
A shared resource: say, a data bus with an access lock
A low priority thread: collect some boring data, briefly write to bus.
A medium priority thread: do an interesting thing for a while.
A high priority thread: manage the bus; intermittent but vital.

Consider the following timeline of activities:
Low thread seizes the lock, prepares to use the bus.
High thread pre-empts low, runs, cannot get lock, sleeps.
Medium thread runs, does not need lock, continues to run.

The low thread never gets a chance to run, so does not release the lock, and as a result the
high thread is blocked indefinitely by lower-rated tasks.
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Priority Inversion

This situation is known as priority inversion, where a low-priority thread, or combination of
threads, manages to block a higher-priority activity.

There is a standard solution: priority inheritance, in which a thread holding a lock is
temporarily promoted to the priority level of any thread waiting on that lock.

However, this adds complexity, has runtime cost, and makes understanding scheduling yet more
complex. Java does not include priority inheritance, although RTSJ, the Real-Time
Specification for Java, requires some control. Windows randomly boosts low-priority threads in
the hope of avoiding the problem.

But honestly, that all sounds rather contrived and unlikely, doesn’t it? The sort of thing that
requires planets to align first — does it ever happen?
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Mars Pathfinder

Mars Pathfinder Lander preparations, February 1996
Ian Stark APL / Lecture 11: Cautionary Tales in Concurrency 2018-10-22

http://nix.larc.nasa.gov/info?id=GPN-2000-000785


Mars Pathfinder

Mars Pathfinder landing arrangements
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Mars Pathfinder

Mars Pathfinder Lander viewed from the rover Sojourner, November 2003
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Mars Pathfinder

Pathfinder has a memory bus architecture joining the various system components. Code
running on the system included:

A low-priority weather observation process that occasionally posted data to the bus.

Medium-priority long-running communications tasks that didn’t use the bus.

A high-priority process to regularly check that all is well on the bus.

Safety feature: If the high-priority process was prevented from running for a long time, then the
system stopped all activities, reset, and shut down for the rest of the day. A “long time” means
more than 1/8s.

On Mars, the mission was so successful that data levels rose far above those anticipated. And
the lander reset. And again the next day. . .
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Mars Pathfinder

The cause of the Pathfinder resets was indeed priority inversion, complicated by the fact that
different threads used different mechanisms to access the bus: the weather observation didn’t
directly take a lock, it used a pipe that used a call to the file system that ...

NASA fixed it: they ran a duplicate on earth, recreated the reset, dumped a trace and read it
carefully. The fix was tricky: it patched the compiled binaries on the probe to modify global
flags controlling priority inheritance; inevitably, this affected other code but was reckoned to be
safe.

NASA are proud to "test what they fly and fly what they test" — all the monitoring and
control code remains on the actual probe. This includes tracing and logging code, and even a
command shell. Although the lightspeed lag might make it tricky to use interactively.

See: What really happened on Mars? Glenn Reeves (NASA), responding to Mike Jones (Microsoft Research)
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Now a Major Motion Picture Starring Matt Damon +

Andy Weir.
The Martian.
Crown, 2014.

“We’ve been looking through the old Pathfinder software.
We got duplicate computers up and running for testing.
Same computers they used to find a problem that almost
killed the original mission. Real interesting story actually;
turns out there was a priority inversion in Sojourner’s
thread management and —” (page 121)
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Memory Models

In a concurrent environment, with multiple threads executing over shared memory, a memory
model describes how reads and writes in one thread are seen by others.

This is nontrivial in an architecture where memory is accessed by one or more processors
through layers of caches.

In a strong memory model, every thread sees reads and writes in exactly the same order;
everything is always flushed out to “real” memory before anything else happens.

In a relaxed memory model, this may not hold. Different threads may see things in a different
order; they might even see different things.
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The Java Memory Model
Shared-memory concurrency is built in to Java, and the details of its memory model are a part
of the language definition.
Java has a relaxed memory model, whose details have undergone significant changes over time.

James Gosling, Bill Joy, Guy Steele.
The Java Language Specification (First Edition), Chapter 17.
Addison-Wesley, 1996.

William Pugh (Specification Lead).
JSR 133: Java Memory Model and Thread Specification Revision, September 2004.
Incorporated into Java 5

David Aspinall, Jaroslav Ševčík.
Java Memory Model Examples: Good, Bad and Ugly. In VAMP 2007: Proceedings of the First
International Workshop on Verification and Analysis of Multi-threaded Java-like Programs.
September 2007.

Subsequently influenced C11 and C++11 memory model
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JMM Audience

The Java memory model (JMM) is addressed to at least three audiences:

Programmers: writing concurrent code, working out what synchronization is required.

Compilers: working out appropriate optimized instruction sequences.

Processor cores: executing threads and memory operations; with concurrent execution,
instruction-level parallelism, caching, speculative execution,. . .
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JMM Content

The JMM is largely in the form of do’s and don’t’s, with accompanying intuition and
explanation.

Programmers: which idioms work, which don’t.

Compilers: what instruction manipulation is allowed, what isn’t.

Processor cores: what caching, speculation, parallelism is acceptable, and what isn’t.

The JMM does not have a formal semantics, although it does have some theorems. Some of
the theorems have proofs. Some of the proofs are valid.

That sounds harsh, but in fact it’s remarkable to have even this level of end-to-end certainty in
a real-world concurrent language.

JMM formalisation influenced C/C++ standards,
which now has explicit relaxed memory concurrency
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JMM Examples

Two simple threads

int x=0, y=0

int r1 = x; | int r2 = y;
y = 2; | x = 1;

Here x and y are shared variables, initially both 0, while r1 and r2 are local variables. Both
command sequences run together.

Question: After they have finished, if r1==1, can r2==2 ?

Answer: Yes, absolutely. Just reorder these independent instructions. Which might be done by
the compiler, the processor, or the memory cache.

In Java this is legal behaviour whenever a data race is present.
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JMM Guarantees

What has been lost here is sequential consistency: the idea that whatever really happens, the
final outcome must be equivalent to some interleaving of operations which agrees with the
order they appear in the program source.

The JMM guarantees sequential consistency in any program without data races.

Separately, it recognises that data races might be intentional, and provides some sensible limits
on behaviour in those cases.

Even so, the JMM is far from intuitive: it has no global time, and no global store. There are
just actions, some causally ordered, some visible from particular threads.
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Speculation

Two simple threads

int x=0, y=0

int r1 = x; | int r2 = y;
if (r1==0) | x = r2;

{ y=42; } |
else |

{ y=r1; } |

Question: After the two threads have finished, can r1==r2==42 ?
Answer: Yes, absolutely. The left-hand thread may speculatively execute the first branch, then
retract that, but not before the other thread has seen the value in y, assigned it to r2, then x,
which is then picked up by the left-hand thread to put into r1. . .
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Speculation

Two simple threads

int x=0, y=0

int r1 = x; | int r2 = y;
if (r1==0) | x = r2;

{ y=42; } |
else |

{ y=r1; } |

Question: After the two threads have finished, can r1==r2==42 ?

This is explicitly legal under the JMM. However, the “out of thin air” constraint does place some
limits on what can happen.

Ian Stark APL / Lecture 11: Cautionary Tales in Concurrency 2018-10-22



How Bad Can That Be? +

Meltdown and Spectre: “We are currently not aware of effective countermeasures that will
eliminate the root cause of Spectre, short of hardware redesign,” Daniel Genkin, 2018
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Summary

Locks: reentrant, may deadlock, hand-over-hand locking does not nest.

Programming concurrent locks is hard.

Priority inversion: low-priority threads may block high-priority ones.

Programming concurrent priorities is hard.

Relaxed memory model: races, sequential consistency, reordering, speculation.

Programming concurrent architectures is hard.
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Homework

CPU features that make concurrency even trickier

Find out the meaning of the following words, in the context of CPU architecture and execution.

Pipelining

Pipeline hazard

Superscalar

Out-of-order execution

Speculative execution

Branch prediction
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Recommendation: Arrival +
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