
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl

Advances in Programming Languages
Lecture 13: Practical Tools for Java Correctness

Ian Stark

School of Informatics
The University of Edinburgh

Monday 29 October 2018
Semester 1 Week 7

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Outline

1 Opening

2 Assertions in Java

3 JML, the Java Modeling Language

4 Closing

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Outline

1 Opening

2 Assertions in Java

3 JML, the Java Modeling Language

4 Closing

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Topic: Augmented Languages for Correctness and Certification
The next block of lectures cover some language techniques and tools for improving program
correctness:

Specification and Verification

Practical Java tools for Correctness

Separation Logic

Augmented Programming and Certifying Correctness

The focus here is not necessarily on changing what a program does, or making it do that thing
faster, or using less memory, or less power. Instead we want to make sure that what it does is
the right thing to do.

This lecture shows some methods used in Java programming based on ideas from Hoare Logic.
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Mid-course Feedback !

Keep doing this! It’s working well

Being enthusiastic

Homework and pointers to further information

Getting students to look properly at each of the assignment options

Concurrency and polymorphism

Being interesting

Printed handouts

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Mid-course Feedback !

Stop this! I don’t find it helpful

Running over time

Actually, I was the one who put that in.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Mid-course Feedback !

Start this! I think it’s worth a try

More coding examples

Exam preparation (Yes, I’ll do that, final lectures)

Tutorials (Maybe in a 20-credit version?)

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Mid-course Feedback !

About you

What steps can you take to improve your own learning in this course?

Do those homework exercises

Don’t leave coursework until the last minute

Refresh my understanding of the lambda-calculus

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Mid-course Feedback !

About you

Which statement best describes how you feel about the level of challenge in this course?

40% 60%

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Homework from Thursday
The lecture on Monday will look at some tools for checking Java programs, including those that
apply Hoare Logic and ideas from Design by ContractTM. Before then:

1. Read this

Gary Leavens and Yoonsik Cheon
Design by Contract with JML
http://www.jmlspecs.org/jmldbc.pdf:

2. Do this
Find some information online about assertions in Java — a tutorial, Q+A, a discussion, a
blog post, . . .

Send me a link to this by email.
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

http://www.jmlspecs.org/jmldbc.pdf

Homework results: Links about Java assertions

WikiBooks: Java Programming
https://en.wikibooks.org/wiki/Java_Programming/Keywords/assert

Oracle: Programming With Assertions
http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Geeks for Geeks: Assertions in Java
https://www.geeksforgeeks.org/assertions-in-java/

StackOverflow: Java assert vs. JUnit Assertions?
https://stackoverflow.com/questions/2966347/assert-vs-junit-assertions/6267182

Grégory Pakosz: Assertions or Exceptions?
http://pempek.net/articles/2013/11/16/assertions-or-exceptions/

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

https://en.wikibooks.org/wiki/Java_Programming/Keywords/assert
http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html
https://www.geeksforgeeks.org/assertions-in-java/
https://stackoverflow.com/questions/2966347/assert-vs-junit-assertions/6267182
http://pempek.net/articles/2013/11/16/assertions-or-exceptions/

Outline

1 Opening

2 Assertions in Java

3 JML, the Java Modeling Language

4 Closing

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Java assert

What it is.

When to use it.

Characteristics.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Java assert: What It Is

Simple assertion

assert Expression1 ;

Here Expression1 is a boolean expression. When executed, if Expression1 evaluates to false then
the assertion throws an AssertionError.

Assertion with explanation of failure

assert Expression1 : Expression2 ;

Here:
Expression1 is a boolean expression.
Expression2 is an expression returning a value.

When executed, if Expression1 evaluates to false then the assertion throws a
AssertionError(Expression2).

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Java assert: When to Use It?

To check arguments on the way in to a method? No (write code to handle)

To check results on the way out of a method? Yes

To check an invariant inside a loop? Yes

For user input sanitization? No (write code to sanitize)

To check a data structure is in a standard form? Maybe (if wholly private)

To check file contents are in a standard form? No (write code to handle)

Use exceptions to check for problems that might happen; use assertions to check for problems that mustn’t.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Java assert: Characteristics

Expressed in Java.
(So you can use Java code in the thing to be tested and the error reported)

Checked at runtime.
(So effectiveness depends on coverage of tests.)

Are disabled by default.
(Why? Then what’s the point of them?)

Must be free of side-effects.
(Why? What about new objects, or time spent on execution?)

Can call arbitrary other Java code.
(Provided it is free of side-effects) Program testing can be used to show the presence

of bugs, but never to show their absence!
E. W. Dijkstra, 1969

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF#page=66

Outline

1 Opening

2 Assertions in Java

3 JML, the Java Modeling Language

4 Closing

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Review of Hoare Logic

Hoare Triple
{P} C {Q}

A Hoare assertion {P} C {Q} states that if precondition P holds and code C runs to
completion then postcondition Q will hold afterwards.

Assertions ` {P} C {Q} can be derived using Hoare rules; they may also be tested against a
semantics � {P} C {Q}.

Hoare assertions allow logical reasoning about program behaviour: notably in formal
specification and verification.

Hoare assertions are widely used in tools and languages for formal methods.

Assertions may be strengthened to contracts for code, placing obligations on both caller
and callee.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Model-Based Specification
Modeling is an abstraction method for system design and specification.

A model is a representation of the desired system.
A formal model is one precisely described in a mathematical language.

A model differs from an implementation in that it might:
capture only some aspects of the system (e.g., call graph);
be partial, leaving some areas unspecified;
not be executable.

Any implementation of the system can be assessed against the model. Sometimes the model is
iteratively refined to give an implementation.
Sample applications of modeling in computer software development:

VDM the Vienna Development Method;
B the B method, B language and Event B;

UML the Unified Modeling Language;
Z the Z notation for formal specification.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

The Java Modeling Language

The Java Modeling Language, JML, combines model-based and contract approaches to
specification. openjml.org / jmlspecs.org

Some design features:

The specification lives close to the code
Within the Java source, in annotation comments /∗@...@∗/

Uses Java syntax and expressions
Rather than a separate specification language.

Common language for many tools and analysis
Tools add their own extensions, and ignore those of others.

JML tools go well beyond runtime assertion checking: some prove correctness before
compilation; some generate unit tests; others identify counterexamples to show possible
problems.
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

openjml.org
jmlspecs.org

JML by Example: Basics

public class Account {
public int credit;

/∗@ requires credit > amount && amount > 0;
@ ensures credit > 0 && credit == \old(credit) -amount;
@∗/

public int withdraw(int amount) {
...

}
}

JML conditions combine logical formulae (&&, ==) with Java expressions (credit, amount).
Expressions used in JML must be pure: no side-effects.
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

JML by Example: Logical Formulas

public class IntArray {
public int[] contents;

/∗@ requires (\forall int i , j ;
@ 0<=i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@
@ ensures (contents[\result] == value) || (\result == -1);
@∗/

public int search (int value) { ... }
}

The search routine requires that array contents be sorted on entry. This would, for example, be
necessary if it used binary chop to locate value.
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

JML by Example: Class Invariants

public class IntArray {
public int[] contents;
/∗@ invariant (\forall int i , j ;
@ 0<=i && i<j && j<contents.length;
@ contents[i] <= contents[j]);
@∗/

/∗@ ensures (contents[\result] == value) || (\result == -1);
@∗/

public int search (int value) { ... }
}

Now contents must be sorted whenever it is visible to clients of IntArray.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

JML by Example: Assumptions and Assertions

/∗@ assume j∗j < contents.length @∗/
contents[j∗j] = j;

...

a[0] = complexcomputation(a,v);
/∗@ assert (\forall int i ; 0<i && i<10; a[0] < a[i]) @∗/

An assumption may help a static analysis tool.

An assertion must always be satisfied — similar to Java’s runtime assert.

Unlike Java assert, JML can use arbitrary logical formulas and need not be directly executable.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

JML by Example: Model Fields

public class IntArray {
public int[] contents;

/∗@ model int total;
@ represents total = arraySum(contents)
@∗/

...
}

A model field represents some property of the model that does not appear explicitly in the
implementation.

Once defined, other JML expressions can refer to total just like other fields.
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

JML by Example: Model Methods and Classes

/∗@ ensures \result = (\sum int i; 0<i && i<a.length; a[i])
@
@ public model int arraySum(int[] a);
@∗/

/∗@ public model class JMLSet { ... } @∗/

Specifications may refer to model methods and even entire model classes to represent and
manipulate desired system properties.
JML provides specifications for the standard Java classes, as well as a library of model classes
for mathematical constructions like sets, bags, integers and reals.

Java has implementations with similar names, but these model classes
are for the mathematical concepts, with arbitrary size and precision.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

JML: Behavioural Subtyping
Recall from earlier: behavioural subtyping is that if S is a subtype of T then any S can be
substituted in place of a T.

Liskov’s principle of substitutivity:
. . . properties that can be proved using the specification of an object’s
presumed type should hold even though the object is actually a subtype
of that type. [Liskov and Wing, 1994]

Barbara Liskov
2008 Turing Award

Jeannette Wing
Columbia/CMU/MSR

This can be captured by requiring that when S extends T:
Each precondition for S.m is implied by the preconditions of T.m;
The postconditions for S.m imply each postcondition for T.m;
The invariants of class S extend the invariants of class T.

In JML this is captured by specification inheritance, which enforces substitutivity between
classes and subclasses. [Leavens, 2015]
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

https://doi.org/10.1145/197320.197383
http://amturing.acm.org/award_winners/liskov_1108679.cfm
https://www.microsoft.com/en-us/research/people/wing/
https://doi.org/10.1145/2766446

Static JML Tools: Checking and Verification

JML annotations can be used to check code before it is executed, or even within an IDE before
it is compiled.

ESC/Java 2 carries out a range of static checks on Java programs. These include formal
verification of JML annotations using a fully-automated theorem prover.
Controversially, the checker is neither sound nor complete: it warns about many potential bugs,
but not all actual bugs.
This is by design: the aim is to find many possible bugs, quickly.

KeY is a formal software development tool based on a dynamic logic for Java. KeY accepts
JML for the specification of Java code.

OpenJML includes tools to check JML specifications before compilation using any of the Z3,
CVC4 or Yices theorem provers (specifically, these are SMT solvers).

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Dynamic JML Tools: Running and Testing

JML annotations can drive various checks on running code.

jml4c is a compiler which inserts runtime tests for every JML annotation; if an assertion fails,
an error message provides dynamic information about the failure.

JMLUnitNG creates unit tests based on preconditions, postconditions and invariants. These
automatically exercise and test assertions made in the code.

JMLOK2 generates both tests and runtime oracles, which are then run to identify places where
code does not meet its specification.

OpenJML includes tools to compile JML annotations into runtime checks.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

https://www.openjml.org/

TimSort +

The TimSort algorithm performs a stable sort on an array in memory. Based on mergesort, it’s
highly adaptive where some data is already sorted.
Space and time performance of TimSort is typically excellent, and even in the worst-case
remains good.
The original ideas go back to 1993. TimSort was implemented for Python in 2002, soon
becoming the default. It’s been the default sorting algorithm for Java and Android since 2011.

http://sortvis.org http://corte.si/posts/code/timsort/index.htmlIan Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

http://sortvis.org
http://corte.si/posts/code/timsort/index.html

TimSort +

In 2015 smart folk in the EU Envisage project had been using JML in the KeY tool to verify
some standard sorting algorithms in Java.

They moved on to the more complex TimSort implementation, and were unable to prove an
important invariant of the algorithm. This turned to be because it wasn’t true. It wasn’t true in
the Python implementation either.

The smallest Java counterexample is a 67,108,864-element array. The smallest Python one
requires at least 249 elements (0.5 petaelement).

Java TimSort has been adjusted so that the smallest counterexample is now bigger than the
largest int-indexed array.

Python TimSort has been fixed so that the invariant is true.

https://is.gd/timfix http://www.envisage-project.eu/timsort-specification-and-verification
http://www.envisage-project.eu/key-deductive-verification-of-software

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

http://www.envisage-project.eu/consortium/
https://is.gd/timfix
http://www.envisage-project.eu/timsort-specification-and-verification
http://www.envisage-project.eu/key-deductive-verification-of-software

Outline

1 Opening

2 Assertions in Java

3 JML, the Java Modeling Language

4 Closing

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Summary

Assertions in Java

Statements in code of programmer expectations.
Can be checked at runtime during testing.
Supplement, but are different from, standard exceptions.

The Java Modeling Language

JML combines model-based and contract-style specification

Annotations within code: requires, ensures, . . .

Provides model fields, methods and classes.

Common input language for many tools: runtime checks, static analyses, test generators,
invariant guessers, etc.

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

Homework
JML is just one of many frameworks for specifying and verifying code in various programming
languages.

For example: Java annotations, FindBugsTM, QuickCheck, the C specification language ACSL
and Frama-C platform, Spec#, . . .

Your homework is to use a small part of one such system.

1. Read This
Find out about Type Annotations and Pluggable Type Systems by reading the Oracle Java
Tutorial lesson with that name.

2. Do this
Try out the @NonNull and @Nullable annotations on the Checker Framework live demo:

http://eisop.uwaterloo.ca/live
Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

http://eisop.uwaterloo.ca/live

Additional Coding Exercise +

The Checker Framework provides twenty different checkers for Java source code through
pluggable type-checking.

http://checkerframework.org/

Browse the manual there to see some of the example checkers.

Work through one of the tutorials — for these you will need to install the Checker Framework
and use it through Eclipse or another Java IDE.

https://types.cs.washington.edu/checker-framework/tutorial/
https://github.com/glts/safer-spring-petclinic/wiki

Ian Stark APL / Lecture 13: Practical Tools for Java Correctness 2018-10-29

http://checkerframework.org/
https://types.cs.washington.edu/checker-framework/tutorial/
https://github.com/glts/safer-spring-petclinic/wiki

	Opening
	Assertions in Java
	JML, the Java Modeling Language
	Closing

