
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl

Advances in Programming Languages
Lecture 14: Separation Logic

Ian Stark

School of Informatics
The University of Edinburgh

Monday 5 November 2018
Semester 1 Week 8

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Outline

1 Opening

2 Propositions in Separation Logic

3 Hoare Triples in Separation Logic

4 Closing

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Outline

1 Opening

2 Propositions in Separation Logic

3 Hoare Triples in Separation Logic

4 Closing

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Topic: Augmented Languages for Correctness and Certification
The next block of lectures cover some language techniques and tools for improving program
correctness:

Specification and Verification

Practical Java tools for Correctness

Separation Logic

Augmented Programming and Certifying Correctness

The focus here is not necessarily on changing what a program does, or making it do that thing
faster, or using less memory, or less power. Instead we want to make sure that what it does is
the right thing to do.

This lecture introduces an enrichment of Hoare Logic that supports local reasoning about code
that works with linked-pointer data structures in memory.
Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Homework from Monday
JML is just one of many frameworks for specifying and verifying code in various programming
languages.
For example: Java annotations, FindBugs™, QuickCheck, the C specification language ACSL
and Frama-C platform, Spec#, . . .
Your homework is to use a small part of one such system.

1. Read This
Find out about Type Annotations and Pluggable Type Systems by reading the Oracle Java
Tutorial lesson with that name.

2. Do this
Try out the @NonNull and @Nullable annotations on the Checker Framework live demo:

http://eisop.uwaterloo.ca/live
Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

http://eisop.uwaterloo.ca/live

Outline

1 Opening

2 Propositions in Separation Logic

3 Hoare Triples in Separation Logic

4 Closing

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Plan of Work

The store/heap model for linked datastructures

Decomposing a linked heap into heaplets

Assertions about the store and heap

New operations: star ∗ and magic wand −∗

Representing datastructures with this logic

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Store

A Hoare triple {P} C {Q} involves assertions P and Q which talk about the state of an
imperative program.

{a > 3} b := a+a {b > 6}
{(d > z) ∧ (d' > z) ∧ (z > 0)} c := d∗d' {c > z2}

{true} while i>0 do i := i-1 { i 6 0}

In these examples the state is the values of the variables mentioned — a, b, c, d, d' and i. This
is usually described as an environment or store, formalised as a mapping s from variable names
to stored values.

s ∈ Store
def
= VarName → Int

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Heap

Most imperative languages also provide larger and more complex datastructures that an a simple
store of variables. Things like objects, linked lists, trees, or graphs are typically implemented
using a heap: an area of memory over which either the programmer or the language runtime
has very flexible control. The following lists some distinctive characteristics of the heap.

The heap contains cells that can hold values.
Each cell has an index or address that uniquely identifies its location in the heap.
Cells in consecutive locations may be grouped into structured records.
Cells may contain index values (pointers) that identify other cells in the heap.
Variables in the store can also contain pointers.
Records and pointers can be used to build complex linked datastructures.
Portions of the heap can be arbitrarily allocated and deallocated as a program executes.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Modelling the Heap

To model the behaviour of a heap, we can combine the store s with another partial map h

recording which heap cells are allocated and what values they hold. For simplicity, we’ll assume
cells have integer addresses and contain integer values.

s ∈ Store
def
= VarName → Int

h ∈ Heap
def
= Int ⇀ Int

(s,h) ∈ State
def
= Store×Heap

The domain of the map h, written dom(h), indicates which heap cells have been allocated. It’s
possible to have dangling pointers in both the heap and the store, where an address points to a
heap cell that’s not currently in use.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Operations on Heaps and Heaplets

A heap is partial, as only some cells will be allocated, and may include dangling pointers.

h ∈ Heap
def
= Int ⇀ Int

Two heaps h1 and h2 are disjoint h1 ⊥ h2 if they allocate non-overlapping sets of cells. In this
case we can combine them to get their union h1 · h2.

h1 ⊥ h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 · h2
def
= h1 ∪ h2 provided that h1 ⊥ h2

Going in the other direction, it’s possible to separate a larger heap h into smaller heaplets
h = h1 · h2, usually in many different ways. Note that the heaplets h1 and h2 may have
dangling pointers crossing between them.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Assertions about Heaps

Empty emp The heap is empty, no cells are allocated.

Singleton e 7→ e ′ The heap has a single allocated cell, at
address e, containing value e ′.

Separating Conjunction
“Star”

P ∗ P ′ The heap can be split into two disjoint
heaplets, with one satisfying P and the other
satisfying P ′.

Separating Implication
“Magic Wand”

P −∗ Q If the heap is combined with any disjoint heap
h ′ that satisfies P, then the combined heap will
satisfy Q.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Derived Assertions about Heaps

e ↪→ e ′
def⇐⇒ e 7→ e ′ ∗ true

e 7→ −
def⇐⇒ ∃x . e 7→ x

e ↪→ −
def⇐⇒ (e 7→ −) ∗ true

e 7→ e1, . . . , en def⇐⇒ (e 7→ e1) ∗ ((e+ 1) 7→ e2) · · · ∗ ((e+ (n− 1)) 7→ en)

e ↪→ e1, . . . , en def⇐⇒ (e 7→ e1 . . . , en) ∗ true

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Datastructures in Separation Logic

The language of separation logic makes it possible to describe properties of datastructures built
using pointers in the heap: tuples, records, lists, trees, graphs, objects, . . .

Lists
Assertion list xs e describes a heap made of a linked list that starts at the cell pointed to by e

and contains exactly the values in xs.

list [] i def
= emp ∧ (i = 0)

list (x::xs) i def
= ∃j . (i 7→ x, j) ∗ (list xs j)

The use of separating conjunction “∗” here means that every node in the list uses a distinct part
of the heap. The end of the list is signalled by a null pointer (value 0).

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Datastructures in Separation Logic

The language of separation logic makes it possible to describe properties of datastructures built
using pointers in the heap: tuples, records, lists, trees, graphs, objects, . . .

Binary Trees
Assertion tree t e describes a heap containing a binary tree with structure matching t and root
at the cell pointed to by e.

tree (Leaf x) i def
= i 7→ 0, x

tree (Branch (s, t)) i def
= ∃j, k . (i 7→ 1, j, k) ∗ (tree s j) ∗ (tree t k)

Tags 0 and 1 distinguish between leaves and internal nodes. Again, the separating conjunction “∗”
means that the tree really is a tree: none of the subtrees overlap or share nodes.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Outline

1 Opening

2 Propositions in Separation Logic

3 Hoare Triples in Separation Logic

4 Closing

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Triples

In separation logic, a triple {P} C {Q} now has assertions P and Q that make statements about
the whole state (s,h) not just the store s.

Assertions that don’t depend on the heap are pure assertions; those that do depend on the
contents of the heap are spatial assertions.

The same rules of inference apply as before, together with additional rules for the new heap
operations. For example, the star and magic wand operators satisfy the following:

s,h ` P ∗ (P −∗ Q)

s,h ` Q

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Heap Inference Rules
Any language operation relating to the heap gets an appropriate inference rule.

{emp} v := alloc(e1,...,en) {v 7→ e1, . . . , en}

{(e 7→ −)} [e] := e' {e 7→ e'}

{e 7→ −} dispose e {emp}

These can also be elaborated to account for the remaining heap.

{(e 7→ −) ∗ r} [e] := e' {e 7→ e' ∗ r}

{(e 7→ −) ∗ ((e 7→ e') −∗ p)} [e] := e' {p}

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Frame Rule

Crucially, separation logic makes it possible to reason compositionally, where local reasoning
about use of the heap can be extended to reasoning about a complete program. Central to this
is the frame rule:

{P} C {Q}

{P ∗ R} C {Q ∗ R}
Where C does not modify any of dom(R).

This modularity is one thing that makes it feasible to scale and automate separation logic to
checking and verifying large programs.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Outline

1 Opening

2 Propositions in Separation Logic

3 Hoare Triples in Separation Logic

4 Closing

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Applications

Program Analysis
Separation logic has been extensively applied in academic research and industrial practice. As an
enrichment of Hoare logic, it’s suitable for annotating programs or libraries, specifying desired behaviour,
statically checking properties, or proving program correctness.
It’s been used to prove correctness of numerous pointer-manipulation algorithms for efficient processing
of complex data structures.
The Space Invader analyser checks pointer manipulation in C code; Microsoft’s SLAyer verifies
correctness of device drivers; Facebook’s Infer tool statically checks C, C++, Java and Objective C.

Other Directions
Separation logic has applications to reasoning about concurrent code, where P ∗ Q describes properties P
and Q of distinct threads. There are higher-order versions of separation logic; Hoare Type Theory
incorporating these ideas into a type system; and an mathematical Logic of Bunched Implications that
provided the groundwork for separation logic.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

Homework

1. Watch this
Peter O’Hearn: “Continuous Reasoning: Scaling the impact of formal methods”
Plenary talk at the Federated Logic Conference 2018.
Video: https://is.gd/continuousreasoning
More information: https://www.floc2018.org/speaker/peter-ohearn

2. Do this
Complete and submit your written assignment. If you have questions then send me mail or post
on Piazza.

Ian Stark APL / Lecture 14: Separation Logic 2018-11-05

https://is.gd/continuousreasoning
https://www.floc2018.org/speaker/peter-ohearn

	Opening
	Propositions in Separation Logic
	Hoare Triples in Separation Logic
	Closing

