
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl

Advances in Programming Languages
Lecture 15: Certifying Correctness

Ian Stark

School of Informatics
The University of Edinburgh

Thursday 8 November 2018
Semester 1 Week 8

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Outline

1 Opening

2 Proving Programs Correct

3 Certifying Code

4 Verifying Complete Systems

5 Conclusion

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Outline

1 Opening

2 Proving Programs Correct

3 Certifying Code

4 Verifying Complete Systems

5 Conclusion

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Topic: Augmented Languages for Correctness and Certification
This block of lectures cover some language techniques and tools for improving program
correctness:

Specification and Verification
Practical Java tools for Correctness
Separation Logic
Certifying Correctness

The focus here is not necessarily on changing what a program does, or making it do that thing
faster, or using less memory, or less power. Instead we want to make sure that what it does is
the right thing to do.

Following previous lectures on Hoare Logic, the Java Modeling Language and Separation Logic,
this talk looks at how these can be taken beyond local checking of individual programs and into
a larger whole-systems framework.
Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Homework from Monday

1. Watch this
Peter O’Hearn: “Continuous Reasoning: Scaling the impact of formal methods”
Plenary talk at the Federated Logic Conference 2018.
Video: https://is.gd/continuousreasoning
More information: https://www.floc2018.org/speaker/peter-ohearn

2. Do this
Complete and submit your written assignment. If you have questions then send me mail or post
on Piazza.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

https://is.gd/continuousreasoning
https://www.floc2018.org/speaker/peter-ohearn


https://code.fb.com/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/


Outline

1 Opening

2 Proving Programs Correct

3 Certifying Code

4 Verifying Complete Systems

5 Conclusion

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Specification and Verification

Specification Stating what properties a program ought to have, either before it is written at all,
or by annotating existing code.
For example, we might do this with Hoare preconditions and postconditions;
object invariants; code contracts; separation logic; or wit annotations about
non-null pointers, lack of side-effects, control of exceptions, etc.

Verification Checking that a program does indeed have these desired properties.
This is static checking, which might be straightforwardly automatic, or require
additional user annotations such as loop invariants or library specifications.
Some static checkers turn the problem into verification conditions in formal logic
and pass these to an automated theorem prover — perhaps an SMT solver able
to reason about arithmetic, arrays, bitvectors, and other relevant theories.

Program testing can be used to show the presence
of bugs, but never to show their absence!

— E. W. Dijkstra, 1969
Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF#page=66


Lightweight Verification
Proving arbitrary assertions can be arbitrarily difficult.
In lightweight verification we simplify things by focusing on standard properties of common
interest, rather than full functional correctness. For example:

Exception freedom no uncaught exception is raised.
Pointer validity no null pointer is ever dereferenced.

Arithmetic safety no arithmetic expression divides by zero or overflows.
Race freedom access to shared state does not conflict in different threads.

Standard properties are easy for the programmer to indicate, providing shorthand for possibly
complex logical expressions.
Standard properties may be easier for tools to handle, using ad hoc static analyses or decidable
fragments of logic.
If a tool cannot establish a property, then the programmer may be able to add additional
annotations, or perhaps to rewrite the code in a way that makes the property evident.
Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Many Different Things to Check

This list shows some of the many things that the ESC/Java2 tool checked in source code.

Other tools provide similar checks, often specialising in a particular area and possibly relying on
user interaction or additional programmer annotations.

Null pointer dereference
Negative array index
Array index too large
Invalid type casts
Array storage type mismatch
Divide by zero
Negative array size
Unreachable code

Deadlock in concurrent code
Race condition
Unchecked exception
Object invariant broken
Loop invariant broken
Precondition not satisfied
Postcondition not satisfied
Assertion not satisfied

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Outline

1 Opening

2 Proving Programs Correct

3 Certifying Code

4 Verifying Complete Systems

5 Conclusion

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Once We Have Verified Code, What Then?

Oxford English Dictionary
Certify v. trans. To make (a thing) certain; to guarantee as certain, attest in an authoritative
manner; to give certain information of.

Once we have verified code, or shown it satisfies some key property, how do we communicate
this to others? How do we decide whether code from other sources is trustworthy?

Informal argument written in English
Checklist of manually measured/assessed criteria
Set of executable tests that are checked automatically
A signature of an authority, analogue or digital
Transcript of input and output to a verification system
Digital evidence checked electronically

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://www.oed.com.ezproxy.is.ed.ac.uk/view/Entry/29995


Code Signing

Digital signatures are a very widely-used mechanism for
certifying code: mobile device apps; Microsoft updates;
Windows Driver Signing; Linux package archives; browser
plugins; . . .

This code signing is better than trusting unauthenticated
code; a digital version of “shrink-wrapping” products
with holographic stamps.

However, this is authenticating the supplier of the
product, and doesn’t directly say anything about the
product itself.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



What Does Code Signing Ensure?

Code signing has two particular fallibilities.

1. The signature chain may be compromised.

Microsoft Security Bulletin MS01-017 - Critical
In mid-March 2001, VeriSign, Inc., advised Microsoft that on January 29 and 30, 2001, it issued two
VeriSign Class 3 code-signing digital certificates to an individual who fraudulently claimed to be a
Microsoft employee. The common name assigned to both certificates is "Microsoft Corporation".

Certified Malware: Measuring Breaches of Trust in the Windows Code-Signing PKI
Analysis of malware that bypasses system and anti-virus protection with signed code certificates.
“We identify 27 certificates issued to malicious actors impersonating legitimate companies.”

CCS 2017 — http://signedmalware.org/

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

https://technet.microsoft.com/en-us/library/security/ms01-017.aspx
http://www.umiacs.umd.edu/~tdumitra/papers/CCS-2017.pdf
http://signedmalware.org/


What Does Code Signing Ensure?

Code signing has two particular fallibilities.

2. The code being signed may not in fact be trustworthy.

This might be because the signer failed to check properly, procedures weren’t adequate, or that
they weren’t followed. This might be accidental or malicious.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://windowsitpro.com/security/microsoft-inadvertently-ships-nimda-virus-visual-studio-net
https://www.theregister.co.uk/2018/11/08/cisco_dirty_cow_exploit_code/


What are we Missing Here?

Aside from errors in implementation or procedure, there is a deeper issue that code signing
delegates trust to somebody else rather than examining the code for ourselves.

Digital signatures authenticate the supplier of code, not the code itself.

What if we could check the code ourselves, directly?

One challenge here is that correctness proofs are hard; and even harder if we don’t have the
source code, its annotations, or any insight from the programmer.

Often, however, checking a proof is much simpler than finding a proof.

This lies behind research into Proof-Carrying Code (PCC) and, more generally, the idea of
evidence-based security.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08







Proof-Carrying Code
PCC was originally proposed by George Necula and Peter Lee in 1996 with the example of
network packet filters. It has since been applied in a variety of contexts to provide assurances
about code safety.

The general mechanism is as follows.

A code producer bundles together:

Executable code;
A formal statement about the code’s behaviour — the guarantee;
A proof that the code satisfies the guarantee.

The code consumer receives the bundle and checks:

That the guarantee ensures the desired security or safety properties;
That the proof does show the code satisfies the guarantee.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

MRG Framework

Java
classfile

Java
classfile

Resource
policy

Guarantee
certificate

Guarantee
certificate

JVM

OK?

Source
program

Resource
types

Code producer Code consumer

Certifying
compiler

Proof
checker

Network



Digital Evidence
The PCC framework can extend beyond proofs to all kinds of digital evidence.

Machine-checked proofs; fixpoints for abstract interpretation; loop invariants for bytecode
logics; constraint solutions; ...

These may show different kinds of properties:
Type safety, memory safety, stack and array bounds;
Secure information flow, noninterference, declassification;
Resource usage, access policies;
Invocation protocols, method contracts; ...

Some existing examples:
Stackmaps in the Java bytecode verifier; similarly for .NET;
Typed Assembly Language (TAL) in the Verve OS from Microsoft Research.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Wholesale Digital Evidence

fet09 Prague 2009-04-23Digital Evidence to Guarantee Trustworthy Mobile CodeIan Stark – Mobius

Using Evidence

Flows for Digital Evidence

● From store to user, evidence to satisfy security/resource policy
● From store to developer, stating objective acceptance policies
● From developer to store, providing evidence to meet these

Software
Developers

App
Store Users

Flows for Digital Evidence
From store to user, evidence to satisfy security/resource policy
From store to developer, stating objective acceptance policies
From developer to store, providing evidence to meet these

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Summary on PCC and Digital Evidence
Trust in mobile code can strengthened by supplementing digital signatures with digital evidence.

Digital Signatures

Cryptographic, confirming that software has been approved
Checked against external trust hierarchy of public keys

Digital Evidence

Certificate presenting data about the software itself
Confirms key aspects of software behaviour
Can be independently checked, without external authority

Both rely on mathematical foundations to ensure that no certificate can be forged, and that
code cannot be tampered with. Both can work without revealing any original source code.
Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Some Edinburgh Projects on Digital Evidence +

Mobile Resource Guarantees
Edinburgh/Munich 2002–2005

Mobius: Mobility, Ubiquity and Security
Enabling proof-carrying code for Java on mobile devices
European integrated project 2004–2009

App Guarden: Resilient Application Stores
Edinburgh 2013–2016
UK national cybersecurity programme GCHQ/EPSRC/BIS

Mobility and Security
http://www.lfcs.ed.ac.uk/m+s

Security and Privacy
http://secpriv.inf.ed.ac.uk/

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://www.lfcs.ed.ac.uk/m+s
http://secpriv.inf.ed.ac.uk/


Outline

1 Opening

2 Proving Programs Correct

3 Certifying Code

4 Verifying Complete Systems

5 Conclusion

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



There’s More to Check than Code
Static checkers make it possible to verify properties of source code.

Proof-carrying code and digital evidence lets users check properties of executable binaries.

But how do we get from proofs about source code to proofs about binaries?

And there is more — what must we do to trust all the other components?

Compiler
Bytecode engine / JIT compiler
Hardware execution of machine code
Libraries
Host operating system
. . .

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Compiler Correctness
Compiler correctness has been a concern ever since there were compilers. Different people take
different views on this; two of these we can stereotype as follows.

Programming-Language Researchers

Compilers are complicated pieces of code. We rely on them, but they are buggy.

Like other complicated pieces of code aim to verify that they do what is intended, and fix them
if they don’t.

Compiler Researchers

Compilers are very complicated pieces of code. We rely on them and they are buggy.
But that’s life.

The underlying hardware also has bugs. There haven’t been any verified CPU cores since the
1980s. We just hope the bugs are rare, and for controlling nuclear power stations it’s probably
best to only use old CPU architectures.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Translation Validation

The idea of translation validation is that rather than verifying a whole compiler, we check that
individual compilations actually performed are correct.

This can be even be refined to individual optimisation steps, or specific code transformations.

Translation validation relaxes the requirement that the compiler be globally correct.
Instead, the compiler checks that it has produced the right result each time.

Some input programs may produce errors or trigger compiler bugs; validations cannot be
produced for these programs.

Amir Pnueli, Michael Siegel and Eli Singerman. Translation Validation, TACAS ’98.
http://portal.acm.org/citation.cfm?id=691453

George C. Necula. Translation Validation for an Optimizing Compiler, SIGPLAN Notices, 35/5,
2000. http://doi.acm.org/10.1145/358438.349314.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://portal.acm.org/citation.cfm?id=691453
http://doi.acm.org/10.1145/358438.349314


Complete Compiler Verification

The CompCert project, led by Xavier Leroy, maintains a C compiler for PowerPC, ARM and x86
that has been formally verified using the Coq theorem-prover.

This verification shows that the compiler is semantics-preserving. As a result any safety
property proved on the source code is sure to hold also for the compiled executable binary.

http://compcert.inria.fr

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://compcert.inria.fr


Further Compiler Verification

Following Leroy’s lead, other projects have built further verified compilers. For example:

CerCo: Certified Complexity
A verified C compiler that provides cycle-precise execution costs for an embedded microcontroller.
Edinburgh / Bologna / Paris http://cerco.cs.unibo.it

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency
Enhances CompCert with concurrency primitives for thread management and synchronisation, and
checks their semantics against the Total Store Order (TSO) weak memory model.
Cambridge http://www.cl.cam.ac.uk/~pes20/CompCertTSO

CakeML: A Verified Implementation of ML
Verified compiler from ML to x86-64; the compiler is self-hosting (can compile itself)
Cambridge / NICTA Canberra / Kent https://cakeml.org

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://cerco.cs.unibo.it/
http://cerco.cs.unibo.it
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/
http://www.cl.cam.ac.uk/~pes20/CompCertTSO
https://cakeml.org
https://cakeml.org


Platform Verification
Other projects aim to verify yet more of the tower between source and execution. For example:

SAFE: A Secure Computing Platform http://www.crash-safe.org
Built on tagged hardware that allows per-instruction checking of safety and security policies.
DARPA Clean-Slate Design of Resilient, Adaptive, Secure Hosts (CRASH)

seL4: A Secure OS Kernel
Verified implementation of the L4 operating system microkernel.
National ICT Australia (NICTA) http://sel4.systems

REMS: Rigorous Engineering for Mainstream Systems
Specification and verification for processor architectures, systems programming, and concurrent
software.
Cambridge / London / Edinburgh https://www.cl.cam.ac.uk/~pes20/rems/

HACMS: High-Assurance Cyber-Military Systems
Formal verification for embedded control systems and autonomous vehicles
US DARPA https://is.gd/hacms_darpa

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

http://www.crash-safe.org
http://www.crash-safe.org
http://sel4.systems
http://sel4.systems
https://www.cl.cam.ac.uk/~pes20/rems/
https://www.cl.cam.ac.uk/~pes20/rems/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597724/
https://is.gd/hacms_darpa






Outline

1 Opening

2 Proving Programs Correct

3 Certifying Code

4 Verifying Complete Systems

5 Conclusion

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Summary

Proving Programs Correct

Specification states what properties are expected of a program.
Verification checks that the code given does have those properties

Lightweight specification and verification focuses on simple properties not full correctness.

Certifying Code

Digital Signatures authenticate the supplier of code.
Proof-Carrying Code certifies the code itself and can be independently checked.

Verifying Complete Systems

Translation Validation checks compilation of individual programs.
Compiler Verification checks the compiler itself, as in the CompCert C compiler.
Platform Verification looks at other components between source and runtime behaviour.

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08



Homework
1. Do this
Watch these two short talks where Prof. Kathleen Fisher, first HACMS project leader, explains
to project and its results: https://is.gd/hacms_fisher and https://is.gd/hacms_keynote

To find out more about how the project went and what’s next read these two articles.
https://is.gd/hacms_quadcopter
https://is.gd/hacms_helicopter
https://is.gd/hacms_report

2. Read this
Ken Thompson
Reflections on Trusting Trust
Communications of the ACM, 27(8):761–763, 1984.
DOI: 10.1145/358198.358210

Ian Stark APL / Lecture 15: Certifying Correctness 2018-11-08

https://is.gd/hacms_fisher
https://is.gd/hacms_keynote
https://is.gd/hacms_quadcopter
https://is.gd/hacms_helicopter
https://is.gd/hacms_report
https://doi.org/10.1145/358198.358210

	Opening
	Proving Programs Correct
	Certifying Code
	Verifying Complete Systems
	Conclusion

