
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl

Advances in Programming Languages
Lecture 18: Concurrency and More in Rust

Ian Stark

School of Informatics
The University of Edinburgh

Monday 19 November 2018
Semester 1 Week 10

http://www.ed.ac.uk
https://wp.inf.ed.ac.uk/apl18
https://course.inf.ed.uk/apl
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Outline

1 Opening

2 Object Deconstruction

3 Concurrency in Rust

4 And More...

5 Closing

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Outline

1 Opening

2 Object Deconstruction

3 Concurrency in Rust

4 And More...

5 Closing

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Topic: Programming for Memory Safety

The final block of lectures covers some distinctive features of the Rust
programming language.

Introduction: Zero-Cost Abstractions (and their cost)

Control of Memory: Deconstructed Objects, Ownership and Borrowing

Concurrency: Shared Memory without Data Races

Rust is a fairly new language (1.0 in 2015) that aims to support safe and efficient systems
programming. In support of that aim, much of its design builds on the kinds of advances in
programming languages that have appeared in this course.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Homework from Thursday
1. Do This
Work through this extremely short introduction to using Rust.

Getting Started With Rust
lil_firelord, CodinGame
https://tech.io/playgrounds/365/getting-started-with-rust

If you want to know more then I recommend: https://stevedonovan.github.io/rust-gentle-intro and then
https://doc.rust-lang.org/rust-by-example and then https://doc.rust-lang.org/book

2. Watch this
RustBelt: Securing the Foundations of the Rust Programming Language
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, Derek Dreyer.
POPL 2018: 4th ACM SIGPLAN Symposium on Principles of Programming Languages
Video: https://is.gd/rustbeltpopl2018
Slides and more: https://plv.mpi-sws.org/rustbelt/popl18/

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19

https://tech.io/playgrounds/365/getting-started-with-rust
https://stevedonovan.github.io/rust-gentle-intro
https://doc.rust-lang.org/rust-by-example
https://doc.rust-lang.org/book
https://is.gd/rustbeltpopl2018
https://plv.mpi-sws.org/rustbelt/popl18/


APL Weeks 10 and 11 !

Week 10
Monday 19 November Concurrency and More in Rust
Thursday 22 November No Lecture

Week 11
Monday 26 November Guest Lecture: Maria Gorinova
Thursday 29 November Exam Preparation Lecture

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Review and Exam Preparation !

The final lecture will be exam preparation. I’ll go through some advice on reviewing course
material, practising before the exam, and techniques for approaching exam questions.

Past Papers http://wp.inf.ed.ac.uk/apl18/exam#past-papers

2007–2008 2008–2009 2009–2010 2010–2011 2014–2015 2016–2017

Next week I’ll set some homework of specific past questions to work through. In the lecture
itself I shall go through solutions to those questions.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19

http://wp.inf.ed.ac.uk/apl18/exam#past-papers
https://exampapers.ed.ac.uk/record/34647/1/2008873.pdf
https://exampapers.ed.ac.uk/record/32047/1/2009881.pdf
https://exampapers.ed.ac.uk/record/37305/1/20101014.pdf
https://exampapers.ed.ac.uk/record/39906/1/20111589.pdf
https://exampapers.ed.ac.uk/record/52193/1/2015899-INFR11101.pdf
https://exampapers.ed.ac.uk/record/96873/1/2017666-INFR11101.pdf


Outline

1 Opening

2 Object Deconstruction

3 Concurrency in Rust

4 And More...

5 Closing

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Review

Traits

Any struct or enum in Rust can have methods attached with impl, or implement a suite of
several methods to match a trait , with ad-hoc polymorphism.

Trait inheritance gives subtyping, and trait bounds refine generics for parameterised structures
and polymorphic functions.

All is resolved and monomorphised statically at compile time, giving strict checking of
sophisticated types with no runtime overhead.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Review

Ownership

Rust tracks ownership of values using move semantics for the handover of values in assignment,
function call and return.

Move semantics lets the compiler statically check the lifetime of structured values, both on the
stack and in Boxes on the heap. This guarantees memory safety without runtime overhead.

Borrowing references makes it possible to live with move semantics. Borrowing mutable
references, with multiple-read single-writer, makes for C-like pointer manipulation and precise
control of memory.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Object Deconstruction
Rust picks apart many of the features that go together to
make objects and classes in most other languages.

Collecting values with struct
Alternate variants with enum
Method implementation with impl
Ad-hoc polymorphism with method call syntax
Interfaces and subtyping with trait
Heap allocation with Box
Explicit mutability with let mut
Call-by-reference with & and &mut

With all these we can build our own objects. As well as
all kinds of other things.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19









Object Deconstruction

Rust picks apart many of the features that go together to
make objects and classes in most other languages.

Collecting values with struct
Alternate variants with enum
Method implementation with impl
Ad-hoc polymorphism with method call syntax
Interfaces and subtyping with trait
Heap allocation with Box
Explicit mutability with let mut
Call-by-reference with & and &mut

With all these we can build our own objects. As well as
all kinds of other things.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



What Do We Win?
The key guarantee in Rust is memory safety.

No null pointers.
No dangling pointers.
No reading uninitialized memory.
No reading memory after deallocation.
No aliasing bugs.
No memory leaks.
No manual deallocation.

All without reference counting, tag words, garbage collection, or other space or time overheads.
Everything statically checked and assured by the compiler.

Provided you can convince the borrow checker
Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Trait Objects

We even now have enough to manage dynamic dispatch and runtime method selection, instead
of the default static dispatch and compile-time monomorphisation.

trait HasDimensions {
fn height(&self) -> i32;
fn width(&self) -> i32;

}

fn generic_footprint<T: HasDimensions>(item: T) -> i32 {
item.height() ∗ item.width()

}
fn dynamic_footprint(item: &dyn HasDimensions) -> i32 {
item.height() ∗ item.width()

}

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Trait Objects

Here item: &dyn HasDimensions is a trait object whose type is not resolved statically, but carries
around a method table at runtime for dynamic dispatch.

trait HasDimensions {
fn height(&self) -> i32;
fn width(&self) -> i32;

}

fn generic_footprint<T: HasDimensions>(item: T) -> i32 {
item.height() ∗ item.width()

}
fn dynamic_footprint(item: &dyn HasDimensions) -> i32 {
item.height() ∗ item.width()

}

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Trait Objects

There is an equivalent construction on the heap with trait object Box<&dyn HasDimensions>,
which can contain any value implementing the HasDimensions trait.

trait HasDimensions {
fn height(&self) -> i32;
fn width(&self) -> i32;

}

fn generic_footprint<T: HasDimensions>(item: T) -> i32 {
item.height() ∗ item.width()

}
fn dynamic_footprint(item: &dyn HasDimensions) -> i32 {
item.height() ∗ item.width()

}

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Outline

1 Opening

2 Object Deconstruction

3 Concurrency in Rust

4 And More...

5 Closing

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Concurrency
Rust offers concurrent programming through its standard thread library.

use std::thread;

fn print_hello_world () { println!("Hello, World!") }

fn main(){

let h = thread::spawn(print_hello_world); // Pass function to be executed

let _ = h.join(); // Wait for completion, discard result

println!("That went well"); // Announce success

}

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Concurrency

Rust threads can be spawned from arbitrary lambdas and closures, not just bare functions, and
map directly to OS threads. Features such as thread pools, lightweight tasks, futures, promises,
work stealing, data parallelism, are all under development.

Rust Win
Ownership and move semantics mean each item of data is owned by just one thread at a time.
Threads can still share access to data by borrowing references.
It’s also possible for threads to borrow write access to shared store, using mutable references.
The multiple-reader single-writer constraint on borrowing mutable references means that:

Concurrent Rust programs never contain data races

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Communication

Rust provides channels for communication between threads. The channel() function creates a
new channel to carry T values and returns a pair (Sender<T>, Receiver<T>).

Communication Traits
Marker traits help manage shared resources, and are automatically inferred by the compiler.

Send identifies types that can be safely transferred between threads.
Sync marks types whose references can be safely shared between threads.

Sender<T> implements both Clone and Send: the capability to send on a channel can be
duplicated and passed around threads.
Receiver<T> implements Send but not Clone: only one thread at a time can listen on a
channel, although that ability can be transferred.
With these Rust statically guarantees multiple-producer single-consumer channel behaviour.
Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



So Much Winning
Rust offers:

Safe shared memory
No dereferencing errors
No aliasing bugs
No memory leaks
No manual deallocation

Safe concurrency
Shared memory access
No data races
Value-passing channels
No channel input races

To do this uses just: strict static typing, default immutability, deconstructed objects, traits,
trait bounds, ownership, reference borrowing, lifetime polymorphism, markers traits, a separate
unsafe language, . . .
Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Outline

1 Opening

2 Object Deconstruction

3 Concurrency in Rust

4 And More...

5 Closing

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Rust: Friends Don’t Let Friends Skip Leg Day +

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Maybe Not So Simple: Reference Counting

Even with Box, &T and &mut T it can be hard to build and manipulate complex linked
datastructures. That’s why Rust provides the following, too.

Rc<T> is a reference counted pointer: a runtime counter tracks how many instances of
the reference still exist. It can help when there’s no certainty which reference will be the
last one to be used.
Cycles of these will not be deallocated and may leak memory. Rc<T> is not safe to share
between threads.

Weak<T> is a weak pointer variant of Rc<T>: it will not on its own cause a value to be
retained, but if the value is still there it can be accessed.

Arc<T> is a version of Rc<T> that can be used across multiple threads, as it has an
atomic reference count.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Maybe Not So Simple: Interior Mutability
Strict separation between mutable and immutable can be limiting; especially as struct fields
cannot be individually mutable. So Rust has some more datatypes to help.

Cell<T> provides interior mutability: the contents can be changed with get and set
methods, but it’s not regarded by the compiler as a mutable reference.
Type T must have copy semantics. There is no runtime cost, but Cell<T> can give
aliasing errors and invalidate datastructure assumptions and invariants.

RefCell<T> provides interior mutability for arbitrary T. Access control is enforced with
explicit borrow and borrow_mut functions that use runtime counters and may fail.

Mutex<T> provides threadsafe interior mutability: access requires explicit request for a
lock. There’s no explicit release, as Rust drops this when the lock goes out of scope.

RwLock<T> provides threadsafe interior mutability for multiple readers or a single writer,
again requiring explicit lock requests.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Maybe Not So Simple: Unsafe +

There’s also the Unsafe Rust language, in which many of these previous structs are written.
That provides raw pointers ∗const T and ∗mut T which can alias, be null, and generally fail to
provide the guarantees of Safe Rust.
Managing the interface between safe and unsafe is tricky too, as each can only rely on certain
things from the other.
To find out more, you want this:

The Rustonomicon
The Dark Arts of Advanced and Unsafe Rust Programming

https://doc.rust-lang.org/nomicon

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19

https://doc.rust-lang.org/nomicon


Outline

1 Opening

2 Object Deconstruction

3 Concurrency in Rust

4 And More...

5 Closing

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



Summary

Safe Shared Memory

Static checking of ownership and lifetimes, via default immutability and move semantics.
Borrowing to allow multiple-reader single-writer behaviour.
Guarantees no pointer errors or aliasing bugs, no runtime overhead.

Safe Concurrency

Ownership tracking guarantees data-race freedom.
Safe shared memory, as well as channel-based communication.
Splitting Sender<T> from Receiver<T> and using marker traits ensures
multiple-producer single-consumer message handling.

But at what cost? Complexity, multiplication of concerns, fighting the borrow checker, and skipping leg day?
Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



APL Weeks 10 and 11 !

Week 10
Monday 19 November Concurrency and More in Rust
Thursday 22 November No Lecture

Week 11
Monday 26 November Guest Lecture: Maria Gorinova
Thursday 29 November Exam Preparation Lecture

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19



References and Borrowing

Deconstructed Burger

Things Organized Neatly, Austin Radcliffe on Tumblr

Bear and related images

Build-a-Bear Workshop

Bling Frog

Partridge & Partridge, 2016

Never Skip Leg Day

Skipping Leg Day on Know Your Meme.

Ian Stark APL / Lecture 18: Concurrency and More in Rust 2018-11-19

http://thingsorganizedneatly.tumblr.com/post/16544771610/submission-a-delicious-meal-in-all-its-individual
https://www.buildabear.co.uk
https://knowyourmeme.com/memes/skipping-leg-day
https://knowyourmeme.com/

	Opening
	Object Deconstruction
	Concurrency in Rust
	And More...
	Closing

